These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


594 related items for PubMed ID: 22559643

  • 1. Conversion of mammographic images to appear with the noise and sharpness characteristics of a different detector and x-ray system.
    Mackenzie A, Dance DR, Workman A, Yip M, Wells K, Young KC.
    Med Phys; 2012 May; 39(5):2721-34. PubMed ID: 22559643
    [Abstract] [Full Text] [Related]

  • 2. Image simulation and a model of noise power spectra across a range of mammographic beam qualities.
    Mackenzie A, Dance DR, Diaz O, Young KC.
    Med Phys; 2014 Dec; 41(12):121901. PubMed ID: 25471961
    [Abstract] [Full Text] [Related]

  • 3. An examination of automatic exposure control regimes for two digital radiography systems.
    Marshall NW.
    Phys Med Biol; 2009 Aug 07; 54(15):4645-70. PubMed ID: 19590115
    [Abstract] [Full Text] [Related]

  • 4. Image quality, threshold contrast and mean glandular dose in CR mammography.
    Jakubiak RR, Gamba HR, Neves EB, Peixoto JE.
    Phys Med Biol; 2013 Sep 21; 58(18):6565-83. PubMed ID: 24002695
    [Abstract] [Full Text] [Related]

  • 5. Early experience in the use of quantitative image quality measurements for the quality assurance of full field digital mammography x-ray systems.
    Marshall NW.
    Phys Med Biol; 2007 Sep 21; 52(18):5545-68. PubMed ID: 17804881
    [Abstract] [Full Text] [Related]

  • 6. Evaluation of clinical full field digital mammography with the task specific system-model-based Fourier Hotelling observer (SMFHO) SNR.
    Liu H, Chakrabarti K, Kaczmarek RV, Benevides L, Gu S, Kyprianou IS.
    Med Phys; 2014 May 21; 41(5):051907. PubMed ID: 24784386
    [Abstract] [Full Text] [Related]

  • 7. A comparison between objective and subjective image quality measurements for a full field digital mammography system.
    Marshall NW.
    Phys Med Biol; 2006 May 21; 51(10):2441-63. PubMed ID: 16675862
    [Abstract] [Full Text] [Related]

  • 8. Effect of image quality on calcification detection in digital mammography.
    Warren LM, Mackenzie A, Cooke J, Given-Wilson RM, Wallis MG, Chakraborty DP, Dance DR, Bosmans H, Young KC.
    Med Phys; 2012 Jun 21; 39(6):3202-13. PubMed ID: 22755704
    [Abstract] [Full Text] [Related]

  • 9. NPWE model observer as a validated alternative for contrast detail analysis of digital detectors in general radiography.
    Van Peteghem N, Bosmans H, Marshall NW.
    Phys Med Biol; 2016 Nov 07; 61(21):N575-N591. PubMed ID: 27754987
    [Abstract] [Full Text] [Related]

  • 10. Investigation of the performance of digital mammographic X-ray equipment: determination of noise equivalent quanta (NEQQC) and detective quantum efficiency (DQEQC) compared with the automated analysis of CDMAM test images with CDCOM and CDIC programs.
    Loos C, Buhr H, Blendl C.
    Rofo; 2013 Jul 07; 185(7):635-43. PubMed ID: 23801376
    [Abstract] [Full Text] [Related]

  • 11. Using aluminum for scatter control in mammography: preliminary work using measurements of CNR and FOM.
    Al Khalifah K, Davidson R, Zhou A.
    Radiol Phys Technol; 2020 Mar 07; 13(1):37-44. PubMed ID: 31749130
    [Abstract] [Full Text] [Related]

  • 12. Effective detective quantum efficiency for two mammography systems: measurement and comparison against established metrics.
    Salvagnini E, Bosmans H, Struelens L, Marshall NW.
    Med Phys; 2013 Oct 07; 40(10):101916. PubMed ID: 24089918
    [Abstract] [Full Text] [Related]

  • 13. Physical characteristics of five clinical systems for digital mammography.
    Lazzari B, Belli G, Gori C, Rosselli Del Turco M.
    Med Phys; 2007 Jul 07; 34(7):2730-43. PubMed ID: 17821981
    [Abstract] [Full Text] [Related]

  • 14. A framework for optimising the radiographic technique in digital X-ray imaging.
    Samei E, Dobbins JT, Lo JY, Tornai MP.
    Radiat Prot Dosimetry; 2005 Jul 07; 114(1-3):220-9. PubMed ID: 15933112
    [Abstract] [Full Text] [Related]

  • 15. Quality control measurements for digital x-ray detectors.
    Marshall NW, Mackenzie A, Honey ID.
    Phys Med Biol; 2011 Feb 21; 56(4):979-99. PubMed ID: 21248386
    [Abstract] [Full Text] [Related]

  • 16. Image quality assessment in digital mammography: part I. Technical characterization of the systems.
    Marshall NW, Monnin P, Bosmans H, Bochud FO, Verdun FR.
    Phys Med Biol; 2011 Jul 21; 56(14):4201-20. PubMed ID: 21701051
    [Abstract] [Full Text] [Related]

  • 17. Method for simulating dose reduction in digital mammography using the Anscombe transformation.
    Borges LR, Oliveira HCR, Nunes PF, Bakic PR, Maidment ADA, Vieira MAC.
    Med Phys; 2016 Jun 21; 43(6):2704-2714. PubMed ID: 27277017
    [Abstract] [Full Text] [Related]

  • 18. Performance evaluation of contrast-detail in full field digital mammography systems using ideal (Hotelling) observer vs. conventional automated analysis of CDMAM images for quality control of contrast-detail characteristics.
    Delakis I, Wise R, Morris L, Kulama E.
    Phys Med; 2015 Nov 21; 31(7):741-6. PubMed ID: 25735660
    [Abstract] [Full Text] [Related]

  • 19. Effects on image quality of a 2D antiscatter grid in x-ray digital breast tomosynthesis: Initial experience using the dual modality (x-ray and molecular) breast tomosynthesis scanner.
    Patel T, Peppard H, Williams MB.
    Med Phys; 2016 Apr 21; 43(4):1720. PubMed ID: 27036570
    [Abstract] [Full Text] [Related]

  • 20. Image quality assessment in digital mammography: part II. NPWE as a validated alternative for contrast detail analysis.
    Monnin P, Marshall NW, Bosmans H, Bochud FO, Verdun FR.
    Phys Med Biol; 2011 Jul 21; 56(14):4221-38. PubMed ID: 21701050
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 30.