These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
219 related items for PubMed ID: 22563385
1. The carbon monoxide releasing molecule CORM-2 attenuates Pseudomonas aeruginosa biofilm formation. Murray TS, Okegbe C, Gao Y, Kazmierczak BI, Motterlini R, Dietrich LE, Bruscia EM. PLoS One; 2012; 7(4):e35499. PubMed ID: 22563385 [Abstract] [Full Text] [Related]
2. In vitro evaluation of tobramycin and aztreonam versus Pseudomonas aeruginosa biofilms on cystic fibrosis-derived human airway epithelial cells. Yu Q, Griffin EF, Moreau-Marquis S, Schwartzman JD, Stanton BA, O'Toole GA. J Antimicrob Chemother; 2012 Nov; 67(11):2673-81. PubMed ID: 22843834 [Abstract] [Full Text] [Related]
3. Carbon monoxide releasing molecule-2 attenuates Pseudomonas aeruginosa-induced ROS-dependent ICAM-1 expression in human pulmonary alveolar epithelial cells. Lee CW, Wu CH, Chiang YC, Chen YL, Chang KT, Chuang CC, Lee IT. Redox Biol; 2018 Sep; 18():93-103. PubMed ID: 30007888 [Abstract] [Full Text] [Related]
4. Psl Produced by Mucoid Pseudomonas aeruginosa Contributes to the Establishment of Biofilms and Immune Evasion. Jones CJ, Wozniak DJ. mBio; 2017 Jun 20; 8(3):. PubMed ID: 28634241 [Abstract] [Full Text] [Related]
5. The ionophore oxyclozanide enhances tobramycin killing of Pseudomonas aeruginosa biofilms by permeabilizing cells and depolarizing the membrane potential. Maiden MM, Zachos MP, Waters CM. J Antimicrob Chemother; 2019 Apr 01; 74(4):894-906. PubMed ID: 30624737 [Abstract] [Full Text] [Related]
7. Carbon monoxide releasing molecule-2 (CORM-2) inhibits growth of multidrug-resistant uropathogenic Escherichia coli in biofilm and following host cell colonization. Sahlberg Bang C, Kruse R, Johansson K, Persson K. BMC Microbiol; 2016 Apr 12; 16():64. PubMed ID: 27067266 [Abstract] [Full Text] [Related]
8. Pyruvate-depleting conditions induce biofilm dispersion and enhance the efficacy of antibiotics in killing biofilms in vitro and in vivo. Goodwine J, Gil J, Doiron A, Valdes J, Solis M, Higa A, Davis S, Sauer K. Sci Rep; 2019 Mar 06; 9(1):3763. PubMed ID: 30842579 [Abstract] [Full Text] [Related]
9. Differential antibacterial activity against Pseudomonas aeruginosa by carbon monoxide-releasing molecules. Desmard M, Foresti R, Morin D, Dagouassat M, Berdeaux A, Denamur E, Crook SH, Mann BE, Scapens D, Montravers P, Boczkowski J, Motterlini R. Antioxid Redox Signal; 2012 Jan 15; 16(2):153-63. PubMed ID: 21864022 [Abstract] [Full Text] [Related]
10. Treatment with the Pseudomonas aeruginosa Glycoside Hydrolase PslG Combats Wound Infection by Improving Antibiotic Efficacy and Host Innate Immune Activity. Pestrak MJ, Baker P, Dellos-Nolan S, Hill PJ, Passos da Silva D, Silver H, Lacdao I, Raju D, Parsek MR, Wozniak DJ, Howell PL. Antimicrob Agents Chemother; 2019 Jun 15; 63(6):. PubMed ID: 30988141 [Abstract] [Full Text] [Related]
12. In vitro analysis of tobramycin-treated Pseudomonas aeruginosa biofilms on cystic fibrosis-derived airway epithelial cells. Anderson GG, Moreau-Marquis S, Stanton BA, O'Toole GA. Infect Immun; 2008 Apr 15; 76(4):1423-33. PubMed ID: 18212077 [Abstract] [Full Text] [Related]
13. Involvement of nitric oxide in biofilm dispersal of Pseudomonas aeruginosa. Barraud N, Hassett DJ, Hwang SH, Rice SA, Kjelleberg S, Webb JS. J Bacteriol; 2006 Nov 15; 188(21):7344-53. PubMed ID: 17050922 [Abstract] [Full Text] [Related]
14. Effect of oxygen limitation on the in vitro antimicrobial susceptibility of clinical isolates of Pseudomonas aeruginosa grown planktonically and as biofilms. Field TR, White A, Elborn JS, Tunney MM. Eur J Clin Microbiol Infect Dis; 2005 Oct 15; 24(10):677-87. PubMed ID: 16249934 [Abstract] [Full Text] [Related]
15. Use of Calgary and Microfluidic BioFlux Systems To Test the Activity of Fosfomycin and Tobramycin Alone and in Combination against Cystic Fibrosis Pseudomonas aeruginosa Biofilms. Díez-Aguilar M, Morosini MI, Köksal E, Oliver A, Ekkelenkamp M, Cantón R. Antimicrob Agents Chemother; 2018 Jan 15; 62(1):. PubMed ID: 29084746 [Abstract] [Full Text] [Related]
18. 3,6-Di(pyridin-2-yl)-1,2,4,5-tetrazine (pytz)-capped silver nanoparticles (TzAgNPs) inhibit biofilm formation of Pseudomonas aeruginosa: a potential approach toward breaking the wall of biofilm through reactive oxygen species (ROS) generation. Chakraborty P, Joardar S, Ray S, Biswas P, Maiti D, Tribedi P. Folia Microbiol (Praha); 2018 Nov 15; 63(6):763-772. PubMed ID: 29855854 [Abstract] [Full Text] [Related]
19. Anti-Pseudomonas aeruginosa activity of 1,10-phenanthroline-based drugs against both planktonic- and biofilm-growing cells. Viganor L, Galdino AC, Nunes AP, Santos KR, Branquinha MH, Devereux M, Kellett A, McCann M, Santos AL. J Antimicrob Chemother; 2016 Jan 15; 71(1):128-34. PubMed ID: 26416778 [Abstract] [Full Text] [Related]
20. A carbon monoxide-releasing molecule (CORM-3) exerts bactericidal activity against Pseudomonas aeruginosa and improves survival in an animal model of bacteraemia. Desmard M, Davidge KS, Bouvet O, Morin D, Roux D, Foresti R, Ricard JD, Denamur E, Poole RK, Montravers P, Motterlini R, Boczkowski J. FASEB J; 2009 Apr 15; 23(4):1023-31. PubMed ID: 19095732 [Abstract] [Full Text] [Related] Page: [Next] [New Search]