These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


109 related items for PubMed ID: 225642

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Regulation of genes coding for enzyme constituents of the bacterial phosphotransferase system.
    Rephaeli AW, Saier MH.
    J Bacteriol; 1980 Feb; 141(2):658-63. PubMed ID: 6245053
    [Abstract] [Full Text] [Related]

  • 4. Identification of a site in the phosphocarrier protein, HPr, which influences its interactions with sugar permeases of the bacterial phosphotransferase system: kinetic analyses employing site-specific mutants.
    Koch S, Sutrina SL, Wu LF, Reizer J, Schnetz K, Rak B, Saier MH.
    J Bacteriol; 1996 Feb; 178(4):1126-33. PubMed ID: 8576048
    [Abstract] [Full Text] [Related]

  • 5. Fractionation and characterization of the phosphoenolpyruvate: fructose 1-phosphotransferase system from Pseudomonas aeruginosa.
    Durham DR, Phibbs PV.
    J Bacteriol; 1982 Feb; 149(2):534-41. PubMed ID: 6799490
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Role of the phosphoenolpyruvate-dependent fructose phosphotransferase system in the utilization of mannose by Escherichia coli.
    Kornberg HL, Lambourne LT.
    Proc Biol Sci; 1992 Oct 22; 250(1327):51-5. PubMed ID: 1361062
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Glucose transport by a mutant of Streptococcus mutans unable to accumulate sugars via the phosphoenolpyruvate phosphotransferase system.
    Cvitkovitch DG, Boyd DA, Thevenot T, Hamilton IR.
    J Bacteriol; 1995 May 22; 177(9):2251-8. PubMed ID: 7730250
    [Abstract] [Full Text] [Related]

  • 18. Phosphoproteins and the phosphoenolpyruvate: sugar phosphotransferase system in Salmonella typhimurium and Escherichia coli: evidence for IIImannose, IIIfructose, IIIglucitol, and the phosphorylation of enzyme IImannitol and enzyme IIN-acetylglucosamine.
    Waygood EB, Mattoo RL, Peri KG.
    J Cell Biochem; 1984 May 22; 25(3):139-59. PubMed ID: 6434550
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. [Properties of mutants of bacteria belonging to the genus Erwinia devoid of common components of the phosphoenolpyruvate-dependent phosphotransferase system].
    Datsenko KA, Evtushenko AN, Sergeev KV, Dobrynina OIu, Bol'shakova TN.
    Genetika; 2002 Jul 22; 38(7):904-10. PubMed ID: 12174582
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.