These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
182 related items for PubMed ID: 22567722
1. Accumulation and phytotoxicity of engineered nanoparticles to Cucurbita pepo. Hawthorne J, Musante C, Sinha SK, White JC. Int J Phytoremediation; 2012 Apr; 14(4):429-42. PubMed ID: 22567722 [Abstract] [Full Text] [Related]
2. Toxicity of silver and copper to Cucurbita pepo: differential effects of nano and bulk-size particles. Musante C, White JC. Environ Toxicol; 2012 Sep; 27(9):510-7. PubMed ID: 22887766 [Abstract] [Full Text] [Related]
3. Assay-dependent phytotoxicity of nanoparticles to plants. Stampoulis D, Sinha SK, White JC. Environ Sci Technol; 2009 Dec 15; 43(24):9473-9. PubMed ID: 19924897 [Abstract] [Full Text] [Related]
4. Impact of Ag nanoparticle exposure on p,p'-DDE bioaccumulation by Cucurbita pepo (zucchini) and Glycine max (soybean). De La Torre-Roche R, Hawthorne J, Musante C, Xing B, Newman LA, Ma X, White JC. Environ Sci Technol; 2013 Jan 15; 47(2):718-25. PubMed ID: 23252415 [Abstract] [Full Text] [Related]
5. Uptake and translocation of p,p'-dichlorodiphenyldichloroethylene supplied in hydroponics solution to Cucurbita. Gent MP, White JC, Parrish ZD, Isleyen M, Eitzer BD, Mattina MI. Environ Toxicol Chem; 2007 Dec 15; 26(12):2467-75. PubMed ID: 18020671 [Abstract] [Full Text] [Related]
6. Silver nanoparticles disrupt wheat (Triticum aestivum L.) growth in a sand matrix. Dimkpa CO, McLean JE, Martineau N, Britt DW, Haverkamp R, Anderson AJ. Environ Sci Technol; 2013 Jan 15; 47(2):1082-90. PubMed ID: 23259709 [Abstract] [Full Text] [Related]
7. Xylem- and phloem-based transport of CuO nanoparticles in maize (Zea mays L.). Wang Z, Xie X, Zhao J, Liu X, Feng W, White JC, Xing B. Environ Sci Technol; 2012 Apr 17; 46(8):4434-41. PubMed ID: 22435775 [Abstract] [Full Text] [Related]
11. Dissolved cerium contributes to uptake of Ce in the presence of differently sized CeO2-nanoparticles by three crop plants. Schwabe F, Tanner S, Schulin R, Rotzetter A, Stark W, von Quadt A, Nowack B. Metallomics; 2015 Mar 17; 7(3):466-77. PubMed ID: 25634091 [Abstract] [Full Text] [Related]
12. Sensitivity of Mediterranean woody seedlings to copper, nickel and zinc. Fuentes D, Disante KB, Valdecantos A, Cortina J, Vallejo VR. Chemosphere; 2007 Jan 17; 66(3):412-20. PubMed ID: 16870229 [Abstract] [Full Text] [Related]
13. Phytotoxicity and accumulation of copper oxide nanoparticles to the Cu-tolerant plant Elsholtzia splendens. Shi J, Peng C, Yang Y, Yang J, Zhang H, Yuan X, Chen Y, Hu T. Nanotoxicology; 2014 Mar 17; 8(2):179-88. PubMed ID: 23311584 [Abstract] [Full Text] [Related]
14. The effects of pruning and nodal adventitious roots on polychlorinated biphenyl uptake by Cucurbita pepo grown in field conditions. Low JE, Åslund ML, Rutter A, Zeeb BA. Environ Pollut; 2011 Mar 17; 159(3):769-75. PubMed ID: 21168941 [Abstract] [Full Text] [Related]
15. Zinc and copper uptake by plants under two transpiration rates. Part I. Wheat (Triticum aestivum L.). Tani FH, Barrington S. Environ Pollut; 2005 Dec 17; 138(3):538-47. PubMed ID: 16043273 [Abstract] [Full Text] [Related]
16. Nutrition influence on copper accumulation by Brassica pekinensis Rupr. Xiong ZT, Li YH, Xu B. Ecotoxicol Environ Saf; 2002 Oct 17; 53(2):200-5. PubMed ID: 12568454 [Abstract] [Full Text] [Related]
17. Tannic acid alleviates bulk and nanoparticle Nd2O3 toxicity in pumpkin: a physiological and molecular response. Chen G, Ma C, Mukherjee A, Musante C, Zhang J, White JC, Dhankher OP, Xing B. Nanotoxicology; 2016 Nov 17; 10(9):1243-53. PubMed ID: 27308847 [Abstract] [Full Text] [Related]