These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


142 related items for PubMed ID: 22568664

  • 21. Efficient dehydrogenation of a formic acid-ammonium formate mixture over Au3Pd1 catalyst.
    Guo XT, Zhang J, Chi JC, Li ZH, Liu YC, Liu XR, Zhang SY.
    RSC Adv; 2019 Feb 18; 9(11):5995-6002. PubMed ID: 35517262
    [Abstract] [Full Text] [Related]

  • 22. Novel improved ruthenium catalysts for the generation of hydrogen from alcohols.
    Junge H, Loges B, Beller M.
    Chem Commun (Camb); 2007 Feb 07; (5):522-4. PubMed ID: 17252115
    [Abstract] [Full Text] [Related]

  • 23. A rechargeable hydrogen battery based on Ru catalysis.
    Hsu SF, Rommel S, Eversfield P, Muller K, Klemm E, Thiel WR, Plietker B.
    Angew Chem Int Ed Engl; 2014 Jul 01; 53(27):7074-8. PubMed ID: 24803414
    [Abstract] [Full Text] [Related]

  • 24. An Effective Strategy to Boost Formic Acid Dehydrogenation over Pd/AC-NH2 Catalyst through Pd Size Control.
    Jiang S, Shi H, Xu Y, Liu J, Yu T, Ren G.
    ACS Appl Mater Interfaces; 2024 Oct 08. PubMed ID: 39377117
    [Abstract] [Full Text] [Related]

  • 25. Catalytic methanolysis of hydrazine borane: a new and efficient hydrogen generation system under mild conditions.
    Karahan S, Zahmakıran M, Özkar S.
    Dalton Trans; 2012 Apr 28; 41(16):4912-8. PubMed ID: 22451008
    [Abstract] [Full Text] [Related]

  • 26. Synergistic Combination of Fermi Level Equilibrium and Plasmonic Effect for Formic Acid Dehydrogenation.
    Zhu J, Huang J, Dai J, Jiang L, Xu Y, Chen R, Li L, Fu X, Wang Z, Liu H, Li G.
    ChemSusChem; 2023 Mar 22; 16(6):e202202069. PubMed ID: 36537011
    [Abstract] [Full Text] [Related]

  • 27. Immobilizing Extremely Catalytically Active Palladium Nanoparticles to Carbon Nanospheres: A Weakly-Capping Growth Approach.
    Zhu QL, Tsumori N, Xu Q.
    J Am Chem Soc; 2015 Sep 16; 137(36):11743-8. PubMed ID: 26323169
    [Abstract] [Full Text] [Related]

  • 28. Theoretical study on the mechanism of aqueous synthesis of formic acid catalyzed by [Ru3+]-EDTA complex.
    Chen ZN, Chan KY, Pulleri JK, Kong J, Hu H.
    Inorg Chem; 2015 Feb 16; 54(4):1314-24. PubMed ID: 25646570
    [Abstract] [Full Text] [Related]

  • 29. Pd/C synthesized with citric acid: an efficient catalyst for hydrogen generation from formic acid/sodium formate.
    Wang ZL, Yan JM, Wang HL, Ping Y, Jiang Q.
    Sci Rep; 2012 Feb 16; 2():598. PubMed ID: 22953041
    [Abstract] [Full Text] [Related]

  • 30. Application of in-situ attenuated total reflection-Fourier transform infrared spectroscopy for the understanding of complex reaction mechanism and kinetics: formic acid oxidation on a Pt film electrode at elevated temperatures.
    Chen YX, Ye S, Heinen M, Jusys Z, Osawa M, Behm RJ.
    J Phys Chem B; 2006 May 18; 110(19):9534-44. PubMed ID: 16686500
    [Abstract] [Full Text] [Related]

  • 31. Amine grafted silica supported CrAuPd alloy nanoparticles: superb heterogeneous catalysts for the room temperature dehydrogenation of formic acid.
    Yurderi M, Bulut A, Caner N, Celebi M, Kaya M, Zahmakiran M.
    Chem Commun (Camb); 2015 Jul 21; 51(57):11417-20. PubMed ID: 26087033
    [Abstract] [Full Text] [Related]

  • 32. Hydrogen liberation from the hydrolytic dehydrogenation of dimethylamine-borane at room temperature by using a novel ruthenium nanocatalyst.
    Caliskan S, Zahmakiran M, Durap F, Özkar S.
    Dalton Trans; 2012 Apr 28; 41(16):4976-84. PubMed ID: 22410969
    [Abstract] [Full Text] [Related]

  • 33. H(2) and CO(2) coadsorption effects in CO adsorption over nanosized Au/gamma-Al(2)O(3) catalysts.
    Georgaka A, Gavril D, Loukopoulos V, Karaiskakis G, Nieuwenhuys BE.
    J Chromatogr A; 2008 Sep 26; 1205(1-2):128-36. PubMed ID: 18723172
    [Abstract] [Full Text] [Related]

  • 34. Thermal decomposition of generation-4 polyamidoamine dendrimer films: decomposition catalyzed by dendrimer-encapsulated Pt particles.
    Ozturk O, Black TJ, Perrine K, Pizzolato K, Williams CT, Parsons FW, Ratliff JS, Gao J, Murphy CJ, Xie H, Ploehn HJ, Chen DA.
    Langmuir; 2005 Apr 26; 21(9):3998-4006. PubMed ID: 15835967
    [Abstract] [Full Text] [Related]

  • 35. Hydrogen Evolution from Additive-Free Formic Acid Dehydrogenation Using Weakly Basic Resin-Supported Pd Catalyst.
    Li L, Chen X, Zhang C, Zhang G, Liu Z.
    ACS Omega; 2022 May 03; 7(17):14944-14951. PubMed ID: 35557660
    [Abstract] [Full Text] [Related]

  • 36. Facile synthesis of AuPd nanoparticles anchored on TiO2 nanosheets for efficient dehydrogenation of formic acid.
    Jiang Y, Chen M, Yang Y, Zhang X, Xiao X, Fan X, Wang C, Chen L.
    Nanotechnology; 2018 Aug 17; 29(33):335402. PubMed ID: 29794333
    [Abstract] [Full Text] [Related]

  • 37. Effects of transport container and ambient storage temperature on motion characteristics of equine spermatozoa.
    Brinsko SP, Rowan KR, Varner DD, Blanchard TL.
    Theriogenology; 2000 May 17; 53(8):1641-55. PubMed ID: 10883850
    [Abstract] [Full Text] [Related]

  • 38. Hydrogen Generation from Additive-Free Formic Acid Decomposition Under Mild Conditions by Pd/C: Experimental and DFT Studies.
    Sanchez F, Motta D, Roldan A, Hammond C, Villa A, Dimitratos N.
    Top Catal; 2018 May 17; 61(3):254-266. PubMed ID: 30956509
    [Abstract] [Full Text] [Related]

  • 39. Insights into the oxidation and decomposition of CO on Au/alpha-Fe2O3 and on alpha-Fe2O3 by coupled TG-FTIR.
    Zhong Z, Highfield J, Lin M, Teo J, Han YF.
    Langmuir; 2008 Aug 19; 24(16):8576-82. PubMed ID: 18605709
    [Abstract] [Full Text] [Related]

  • 40. Spectroscopic and Kinetic Studies of the Reaction of CO+H(2)O and CO+O(2) and Decomposition of HCOOH on Au/H-Mordenite Catalysts.
    Mohamed MM, Ichikawa M.
    J Colloid Interface Sci; 2000 Dec 15; 232(2):381-388. PubMed ID: 11097774
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 8.