These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
173 related items for PubMed ID: 22578927
1. Automatic white matter lesion segmentation using an adaptive outlier detection method. Ong KH, Ramachandram D, Mandava R, Shuaib IL. Magn Reson Imaging; 2012 Jul; 30(6):807-23. PubMed ID: 22578927 [Abstract] [Full Text] [Related]
2. White matter lesion extension to automatic brain tissue segmentation on MRI. de Boer R, Vrooman HA, van der Lijn F, Vernooij MW, Ikram MA, van der Lugt A, Breteler MM, Niessen WJ. Neuroimage; 2009 May 01; 45(4):1151-61. PubMed ID: 19344687 [Abstract] [Full Text] [Related]
3. A novel method for automatic determination of different stages of multiple sclerosis lesions in brain MR FLAIR images. Khayati R, Vafadust M, Towhidkhah F, Nabavi SM. Comput Med Imaging Graph; 2008 Mar 01; 32(2):124-33. PubMed ID: 18055174 [Abstract] [Full Text] [Related]
4. An automated tool for detection of FLAIR-hyperintense white-matter lesions in Multiple Sclerosis. Schmidt P, Gaser C, Arsic M, Buck D, Förschler A, Berthele A, Hoshi M, Ilg R, Schmid VJ, Zimmer C, Hemmer B, Mühlau M. Neuroimage; 2012 Feb 15; 59(4):3774-83. PubMed ID: 22119648 [Abstract] [Full Text] [Related]
5. Lesion segmentation from multimodal MRI using random forest following ischemic stroke. Mitra J, Bourgeat P, Fripp J, Ghose S, Rose S, Salvado O, Connelly A, Campbell B, Palmer S, Sharma G, Christensen S, Carey L. Neuroimage; 2014 Sep 15; 98():324-35. PubMed ID: 24793830 [Abstract] [Full Text] [Related]
6. Automatic segmentation and volumetry of multiple sclerosis brain lesions from MR images. Jain S, Sima DM, Ribbens A, Cambron M, Maertens A, Van Hecke W, De Mey J, Barkhof F, Steenwijk MD, Daams M, Maes F, Van Huffel S, Vrenken H, Smeets D. Neuroimage Clin; 2015 Sep 15; 8():367-75. PubMed ID: 26106562 [Abstract] [Full Text] [Related]
7. Automated segmentation of multiple sclerosis lesions by model outlier detection. Van Leemput K, Maes F, Vandermeulen D, Colchester A, Suetens P. IEEE Trans Med Imaging; 2001 Aug 15; 20(8):677-88. PubMed ID: 11513020 [Abstract] [Full Text] [Related]
8. Automatic segmentation of white matter lesions on magnetic resonance images of the brain by using an outlier detection strategy. Wang R, Li C, Wang J, Wei X, Li Y, Hui C, Zhu Y, Zhang S. Magn Reson Imaging; 2014 Dec 15; 32(10):1321-9. PubMed ID: 25131627 [Abstract] [Full Text] [Related]
9. Evaluating intensity normalization on MRIs of human brain with multiple sclerosis. Shah M, Xiao Y, Subbanna N, Francis S, Arnold DL, Collins DL, Arbel T. Med Image Anal; 2011 Apr 15; 15(2):267-82. PubMed ID: 21233004 [Abstract] [Full Text] [Related]
10. Fully automatic segmentation of multiple sclerosis lesions in brain MR FLAIR images using adaptive mixtures method and Markov random field model. Khayati R, Vafadust M, Towhidkhah F, Nabavi M. Comput Biol Med; 2008 Mar 15; 38(3):379-90. PubMed ID: 18262511 [Abstract] [Full Text] [Related]
11. Automatic segmentation of cerebral white matter hyperintensities using only 3D FLAIR images. Simões R, Mönninghoff C, Dlugaj M, Weimar C, Wanke I, van Cappellen van Walsum AM, Slump C. Magn Reson Imaging; 2013 Sep 15; 31(7):1182-9. PubMed ID: 23684961 [Abstract] [Full Text] [Related]
12. Automatic segmentation and quantitative analysis of white matter hyperintensities on FLAIR images using trimmed-likelihood estimator. Wang R, Li C, Wang J, Wei X, Li Y, Hui C, Zhu Y, Zhang S. Acad Radiol; 2014 Dec 15; 21(12):1512-23. PubMed ID: 25176451 [Abstract] [Full Text] [Related]
14. Automatic segmentation and classification of multiple sclerosis in multichannel MRI. Akselrod-Ballin A, Galun M, Gomori JM, Filippi M, Valsasina P, Basri R, Brandt A. IEEE Trans Biomed Eng; 2009 Oct 15; 56(10):2461-9. PubMed ID: 19758850 [Abstract] [Full Text] [Related]
15. Automatic segmentation of magnetic resonance images using a decision tree with spatial information. Chao WH, Chen YY, Lin SH, Shih YY, Tsang S. Comput Med Imaging Graph; 2009 Mar 15; 33(2):111-21. PubMed ID: 19097854 [Abstract] [Full Text] [Related]
16. Automated quantification of white matter lesion in magnetic resonance imaging of patients with acute infarction. Shi L, Wang D, Liu S, Pu Y, Wang Y, Chu WC, Ahuja AT, Wang Y. J Neurosci Methods; 2013 Feb 15; 213(1):138-46. PubMed ID: 23261771 [Abstract] [Full Text] [Related]
17. Reducing the impact of white matter lesions on automated measures of brain gray and white matter volumes. Chard DT, Jackson JS, Miller DH, Wheeler-Kingshott CA. J Magn Reson Imaging; 2010 Jul 15; 32(1):223-8. PubMed ID: 20575080 [Abstract] [Full Text] [Related]
18. An approach to comparing accuracies of two FLAIR MR sequences in the detection of multiple sclerosis lesions in the brain in the absence of gold standard. Bilello M, Suri N, Krejza J, Woo JH, Bagley LJ, Mamourian AC, Vossough A, Chen JY, Millian BR, Mulderink T, Markowitz CE, Melhem ER. Acad Radiol; 2010 Jun 15; 17(6):686-95. PubMed ID: 20457413 [Abstract] [Full Text] [Related]
19. Multi-stage segmentation of white matter hyperintensity, cortical and lacunar infarcts. Wang Y, Catindig JA, Hilal S, Soon HW, Ting E, Wong TY, Venketasubramanian N, Chen C, Qiu A. Neuroimage; 2012 May 01; 60(4):2379-88. PubMed ID: 22387175 [Abstract] [Full Text] [Related]
20. Automatic segmentation of different-sized white matter lesions by voxel probability estimation. Anbeek P, Vincken KL, van Osch MJ, Bisschops RH, van der Grond J. Med Image Anal; 2004 Sep 01; 8(3):205-15. PubMed ID: 15450216 [Abstract] [Full Text] [Related] Page: [Next] [New Search]