These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
569 related items for PubMed ID: 22580344
1. Chaperone networks in protein disaggregation and prion propagation. Winkler J, Tyedmers J, Bukau B, Mogk A. J Struct Biol; 2012 Aug; 179(2):152-60. PubMed ID: 22580344 [Abstract] [Full Text] [Related]
2. Towards a unifying mechanism for ClpB/Hsp104-mediated protein disaggregation and prion propagation. Haslberger T, Bukau B, Mogk A. Biochem Cell Biol; 2010 Feb; 88(1):63-75. PubMed ID: 20130680 [Abstract] [Full Text] [Related]
3. Substrate threading through the central pore of the Hsp104 chaperone as a common mechanism for protein disaggregation and prion propagation. Tessarz P, Mogk A, Bukau B. Mol Microbiol; 2008 Apr; 68(1):87-97. PubMed ID: 18312264 [Abstract] [Full Text] [Related]
4. Prokaryotic chaperones support yeast prions and thermotolerance and define disaggregation machinery interactions. Reidy M, Miot M, Masison DC. Genetics; 2012 Sep; 192(1):185-93. PubMed ID: 22732191 [Abstract] [Full Text] [Related]
13. N-terminal domain of yeast Hsp104 chaperone is dispensable for thermotolerance and prion propagation but necessary for curing prions by Hsp104 overexpression. Hung GC, Masison DC. Genetics; 2006 Jun 06; 173(2):611-20. PubMed ID: 16582428 [Abstract] [Full Text] [Related]
14. The middle domain of Hsp104 can ensure substrates are functional after processing. Buchholz HE, Dorweiler JE, Guereca S, Wisniewski BT, Shorter J, Manogaran AL. PLoS Genet; 2024 Oct 06; 20(10):e1011424. PubMed ID: 39361717 [Abstract] [Full Text] [Related]
15. Hsp104, Hsp70 and Hsp40 interplay regulates formation, growth and elimination of Sup35 prions. Shorter J, Lindquist S. EMBO J; 2008 Oct 22; 27(20):2712-24. PubMed ID: 18833196 [Abstract] [Full Text] [Related]
16. Thermotolerance requires refolding of aggregated proteins by substrate translocation through the central pore of ClpB. Weibezahn J, Tessarz P, Schlieker C, Zahn R, Maglica Z, Lee S, Zentgraf H, Weber-Ban EU, Dougan DA, Tsai FT, Mogk A, Bukau B. Cell; 2004 Nov 24; 119(5):653-65. PubMed ID: 15550247 [Abstract] [Full Text] [Related]
17. Novel insights into the mechanism of chaperone-assisted protein disaggregation. Weibezahn J, Schlieker C, Tessarz P, Mogk A, Bukau B. Biol Chem; 2005 Aug 24; 386(8):739-44. PubMed ID: 16201868 [Abstract] [Full Text] [Related]
18. In vivo monitoring of the prion replication cycle reveals a critical role for Sis1 in delivering substrates to Hsp104. Tipton KA, Verges KJ, Weissman JS. Mol Cell; 2008 Nov 21; 32(4):584-91. PubMed ID: 19026788 [Abstract] [Full Text] [Related]
19. DnaK-mediated association of ClpB to protein aggregates. A bichaperone network at the aggregate surface. Acebrón SP, Martín I, del Castillo U, Moro F, Muga A. FEBS Lett; 2009 Sep 17; 583(18):2991-6. PubMed ID: 19698713 [Abstract] [Full Text] [Related]
20. The role of pre-existing aggregates in Hsp104-dependent polyglutamine aggregate formation and epigenetic change of yeast prions. Kimura Y, Koitabashi S, Kakizuka A, Fujita T. Genes Cells; 2004 Aug 17; 9(8):685-96. PubMed ID: 15298677 [Abstract] [Full Text] [Related] Page: [Next] [New Search]