These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


360 related items for PubMed ID: 22584803

  • 1. Enhancement effect of two ecological earthworm species (Eisenia foetida and Amynthas robustus E. Perrier) on removal and degradation processes of soil DDT.
    Lin Z, Li XM, Li YT, Huang DY, Dong J, Li FB.
    J Environ Monit; 2012 May; 14(6):1551-8. PubMed ID: 22584803
    [Abstract] [Full Text] [Related]

  • 2. Anaerobic biodegradation of DDT residues (DDT, DDD, and DDE) in estuarine sediment.
    Huang HJ, Liu SM, Kuo CE.
    J Environ Sci Health B; 2001 May; 36(3):273-88. PubMed ID: 11411851
    [Abstract] [Full Text] [Related]

  • 3. Comparison of earthworm and chemical assays of the bioavailability of aged 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene, 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane, and heavy metals in orchard soils.
    Gaw S, Northcott G, Kim N, Wilkins A, Jensen J.
    Environ Toxicol Chem; 2012 Jun; 31(6):1306-16. PubMed ID: 22447312
    [Abstract] [Full Text] [Related]

  • 4. Degradation of chlorinated pesticide DDT by litter-decomposing basidiomycetes.
    Suhara H, Adachi A, Kamei I, Maekawa N.
    Biodegradation; 2011 Nov; 22(6):1075-86. PubMed ID: 21380735
    [Abstract] [Full Text] [Related]

  • 5. Field validation of anaerobic degradation pathways for dichlorodiphenyltrichloroethane (DDT) and 13 metabolites in marine sediment cores from China.
    Yu HY, Bao LJ, Liang Y, Zeng EY.
    Environ Sci Technol; 2011 Jun 15; 45(12):5245-52. PubMed ID: 21595473
    [Abstract] [Full Text] [Related]

  • 6. Effects of two ecological earthworm species on atrazine degradation performance and bacterial community structure in red soil.
    Lin Z, Zhen Z, Ren L, Yang J, Luo C, Zhong L, Hu H, Liang Y, Li Y, Zhang D.
    Chemosphere; 2018 Apr 15; 196():467-475. PubMed ID: 29324386
    [Abstract] [Full Text] [Related]

  • 7. Removal of persistent DDT residues from soils by earthworms: A mechanistic study.
    Xu HJ, Bai J, Li WY, Zhao LX, Li YT.
    J Hazard Mater; 2019 Mar 05; 365():622-631. PubMed ID: 30472447
    [Abstract] [Full Text] [Related]

  • 8. The impact on the soil microbial community and enzyme activity of two earthworm species during the bioremediation of pentachlorophenol-contaminated soils.
    Lin Z, Zhen Z, Wu Z, Yang J, Zhong L, Hu H, Luo C, Bai J, Li Y, Zhang D.
    J Hazard Mater; 2016 Jan 15; 301():35-45. PubMed ID: 26342149
    [Abstract] [Full Text] [Related]

  • 9. Organochlorine insecticide residues in soil and earthworms in the Delhi area, India, August--October, 1974.
    Yadav DV, Mittal PK, Agarwal HC, Pillai MK.
    Pestic Monit J; 1981 Sep 15; 15(2):80-5. PubMed ID: 7312554
    [Abstract] [Full Text] [Related]

  • 10. Using matrix solid-phase microextraction (matrix-SPME) to estimate bioavailability of DDTs in soil to both earthworm and vegetables.
    Fang H, Chu X, Wang X, Pang G, Yu Y.
    Arch Environ Contam Toxicol; 2010 Jan 15; 58(1):62-70. PubMed ID: 19418090
    [Abstract] [Full Text] [Related]

  • 11. Sources and transformation pathways for dichlorodiphenyltrichloroethane (DDT) and metabolites in soils from Northwest Fujian, China.
    Huang H, Zhang Y, Chen W, Chen W, Yuen DA, Ding Y, Chen Y, Mao Y, Qi S.
    Environ Pollut; 2018 Apr 15; 235():560-570. PubMed ID: 29329097
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Novel Chryseobacterium sp. PYR2 degrades various organochlorine pesticides (OCPs) and achieves enhancing removal and complete degradation of DDT in highly contaminated soil.
    Qu J, Xu Y, Ai GM, Liu Y, Liu ZP.
    J Environ Manage; 2015 Sep 15; 161():350-357. PubMed ID: 26203874
    [Abstract] [Full Text] [Related]

  • 15. Changes in atrazine speciation and the degradation pathway in red soil during the vermiremediation process.
    Lin Z, Zhen Z, Liang Y, Li J, Yang J, Zhong L, Zhao L, Li Y, Luo C, Ren L, Zhang D.
    J Hazard Mater; 2019 Feb 15; 364():710-719. PubMed ID: 30412844
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Characterization of new bacterial transformation products of 1,1,1-trichloro-2,2-bis-(4-chlorophenyl) ethane (DDT) by gas chromatography/mass spectrometry.
    Massé R, Lalanne D, Messier F, Sylvestre M.
    Biomed Environ Mass Spectrom; 1989 Sep 15; 18(9):741-52. PubMed ID: 2790260
    [Abstract] [Full Text] [Related]

  • 18. Degradation and mineralization of DDT by the ectomycorrhizal fungi, Xerocomus chrysenteron.
    Huang Y, Wang J.
    Chemosphere; 2013 Aug 15; 92(7):760-4. PubMed ID: 23651556
    [Abstract] [Full Text] [Related]

  • 19. Detection of DDT and its metabolites in two estuaries of South China using a SPME-based device: first report of p,p'-DDMU in water column.
    Xing YN, Guo Y, Xie M, Shen RL, Zeng EY.
    Environ Pollut; 2009 Apr 15; 157(4):1382-7. PubMed ID: 19117651
    [Abstract] [Full Text] [Related]

  • 20. Bioremediation of chlorinated pesticide-contaminated soil using anaerobic sludges and surfactant addition.
    Baczynski TP, Pleissner D.
    J Environ Sci Health B; 2010 Jan 15; 45(1):82-8. PubMed ID: 20390935
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 18.