These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


770 related items for PubMed ID: 22587225

  • 1. Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles.
    Li Y, Zhang W, Niu J, Chen Y.
    ACS Nano; 2012 Jun 26; 6(6):5164-73. PubMed ID: 22587225
    [Abstract] [Full Text] [Related]

  • 2. Visible light-induced antibacterial activity of metaloxide nanoparticles.
    Lipovsky A, Gedanken A, Lubart R.
    Photomed Laser Surg; 2013 Nov 26; 31(11):526-30. PubMed ID: 23448383
    [Abstract] [Full Text] [Related]

  • 3. Photogeneration of reactive oxygen species on uncoated silver, gold, nickel, and silicon nanoparticles and their antibacterial effects.
    Zhang W, Li Y, Niu J, Chen Y.
    Langmuir; 2013 Apr 16; 29(15):4647-51. PubMed ID: 23544954
    [Abstract] [Full Text] [Related]

  • 4. Studies on antibacterial activity of ZnO nanoparticles by ROS induced lipid peroxidation.
    Dutta RK, Nenavathu BP, Gangishetty MK, Reddy AV.
    Colloids Surf B Biointerfaces; 2012 Jun 01; 94():143-50. PubMed ID: 22348987
    [Abstract] [Full Text] [Related]

  • 5. Quantitative Analysis of Reactive Oxygen Species Photogenerated on Metal Oxide Nanoparticles and Their Bacteria Toxicity: The Role of Superoxide Radicals.
    Wang D, Zhao L, Ma H, Zhang H, Guo LH.
    Environ Sci Technol; 2017 Sep 05; 51(17):10137-10145. PubMed ID: 28699742
    [Abstract] [Full Text] [Related]

  • 6. Antibacterial effects of titanium embedded with silver nanoparticles based on electron-transfer-induced reactive oxygen species.
    Wang G, Jin W, Qasim AM, Gao A, Peng X, Li W, Feng H, Chu PK.
    Biomaterials; 2017 Apr 05; 124():25-34. PubMed ID: 28182874
    [Abstract] [Full Text] [Related]

  • 7. Surface interactions affect the toxicity of engineered metal oxide nanoparticles toward Paramecium.
    Li K, Chen Y, Zhang W, Pu Z, Jiang L, Chen Y.
    Chem Res Toxicol; 2012 Aug 20; 25(8):1675-81. PubMed ID: 22693953
    [Abstract] [Full Text] [Related]

  • 8. Photodynamic therapy mediated antiproliferative activity of some metal-doped ZnO nanoparticles in human liver adenocarcinoma HepG2 cells under UV irradiation.
    Ismail AF, Ali MM, Ismail LF.
    J Photochem Photobiol B; 2014 Sep 05; 138():99-108. PubMed ID: 24911277
    [Abstract] [Full Text] [Related]

  • 9. Titanium oxide shell coatings decrease the cytotoxicity of ZnO nanoparticles.
    Hsiao IL, Huang YJ.
    Chem Res Toxicol; 2011 Mar 21; 24(3):303-13. PubMed ID: 21341804
    [Abstract] [Full Text] [Related]

  • 10. Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebrafish: acute toxicity, oxidative stress and oxidative damage.
    Xiong D, Fang T, Yu L, Sima X, Zhu W.
    Sci Total Environ; 2011 Mar 15; 409(8):1444-52. PubMed ID: 21296382
    [Abstract] [Full Text] [Related]

  • 11. Effect of ZnO and TiO₂ nanoparticles preilluminated with UVA and UVB light on Escherichia coli and Bacillus subtilis.
    Kim SW, An YJ.
    Appl Microbiol Biotechnol; 2012 Jul 15; 95(1):243-53. PubMed ID: 22615055
    [Abstract] [Full Text] [Related]

  • 12. Anti-microbial activities of aerosolized transition metal oxide nanoparticles.
    Wang Z, Lee YH, Wu B, Horst A, Kang Y, Tang YJ, Chen DR.
    Chemosphere; 2010 Jul 15; 80(5):525-9. PubMed ID: 20478610
    [Abstract] [Full Text] [Related]

  • 13. Cellular toxicity of TiO2 nanoparticles in anatase and rutile crystal phase.
    Jin C, Tang Y, Yang FG, Li XL, Xu S, Fan XY, Huang YY, Yang YJ.
    Biol Trace Elem Res; 2011 Jun 15; 141(1-3):3-15. PubMed ID: 20506001
    [Abstract] [Full Text] [Related]

  • 14. CuO nanoparticle interaction with human epithelial cells: cellular uptake, location, export, and genotoxicity.
    Wang Z, Li N, Zhao J, White JC, Qu P, Xing B.
    Chem Res Toxicol; 2012 Jul 16; 25(7):1512-21. PubMed ID: 22686560
    [Abstract] [Full Text] [Related]

  • 15. Zinc oxide nanoparticles induced oxidative stress in mouse bone marrow mesenchymal stem cells.
    Syama S, Sreekanth PJ, Varma HK, Mohanan PV.
    Toxicol Mech Methods; 2014 Dec 16; 24(9):644-53. PubMed ID: 25138636
    [Abstract] [Full Text] [Related]

  • 16. Antifungal activity of ZnO nanoparticles--the role of ROS mediated cell injury.
    Lipovsky A, Nitzan Y, Gedanken A, Lubart R.
    Nanotechnology; 2011 Mar 11; 22(10):105101. PubMed ID: 21289395
    [Abstract] [Full Text] [Related]

  • 17. Titanium dioxide nanoparticles induced cytotoxicity, oxidative stress and DNA damage in human amnion epithelial (WISH) cells.
    Saquib Q, Al-Khedhairy AA, Siddiqui MA, Abou-Tarboush FM, Azam A, Musarrat J.
    Toxicol In Vitro; 2012 Mar 11; 26(2):351-61. PubMed ID: 22210200
    [Abstract] [Full Text] [Related]

  • 18. Photogenerated charge carriers and reactive oxygen species in ZnO/Au hybrid nanostructures with enhanced photocatalytic and antibacterial activity.
    He W, Kim HK, Wamer WG, Melka D, Callahan JH, Yin JJ.
    J Am Chem Soc; 2014 Jan 15; 136(2):750-7. PubMed ID: 24354568
    [Abstract] [Full Text] [Related]

  • 19. Cytotoxicity, permeability, and inflammation of metal oxide nanoparticles in human cardiac microvascular endothelial cells: cytotoxicity, permeability, and inflammation of metal oxide nanoparticles.
    Sun J, Wang S, Zhao D, Hun FH, Weng L, Liu H.
    Cell Biol Toxicol; 2011 Oct 15; 27(5):333-42. PubMed ID: 21681618
    [Abstract] [Full Text] [Related]

  • 20. Kinetic analysis of superoxide anion radical-scavenging and hydroxyl radical-scavenging activities of platinum nanoparticles.
    Hamasaki T, Kashiwagi T, Imada T, Nakamichi N, Aramaki S, Toh K, Morisawa S, Shimakoshi H, Hisaeda Y, Shirahata S.
    Langmuir; 2008 Jul 15; 24(14):7354-64. PubMed ID: 18553993
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 39.