These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


362 related items for PubMed ID: 22588304

  • 1. Serine-7 but not serine-5 phosphorylation primes RNA polymerase II CTD for P-TEFb recognition.
    Czudnochowski N, Bösken CA, Geyer M.
    Nat Commun; 2012 May 15; 3():842. PubMed ID: 22588304
    [Abstract] [Full Text] [Related]

  • 2. Brd4 activates P-TEFb for RNA polymerase II CTD phosphorylation.
    Itzen F, Greifenberg AK, Bösken CA, Geyer M.
    Nucleic Acids Res; 2014 Jul 15; 42(12):7577-90. PubMed ID: 24860166
    [Abstract] [Full Text] [Related]

  • 3. Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II.
    Lu H, Yu D, Hansen AS, Ganguly S, Liu R, Heckert A, Darzacq X, Zhou Q.
    Nature; 2018 Jun 15; 558(7709):318-323. PubMed ID: 29849146
    [Abstract] [Full Text] [Related]

  • 4. Separate domains of fission yeast Cdk9 (P-TEFb) are required for capping enzyme recruitment and primed (Ser7-phosphorylated) Rpb1 carboxyl-terminal domain substrate recognition.
    St Amour CV, Sansó M, Bösken CA, Lee KM, Larochelle S, Zhang C, Shokat KM, Geyer M, Fisher RP.
    Mol Cell Biol; 2012 Jul 15; 32(13):2372-83. PubMed ID: 22508988
    [Abstract] [Full Text] [Related]

  • 5. C-terminal repeat domain kinase I phosphorylates Ser2 and Ser5 of RNA polymerase II C-terminal domain repeats.
    Jones JC, Phatnani HP, Haystead TA, MacDonald JA, Alam SM, Greenleaf AL.
    J Biol Chem; 2004 Jun 11; 279(24):24957-64. PubMed ID: 15047695
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Gene-specific requirement for P-TEFb activity and RNA polymerase II phosphorylation within the p53 transcriptional program.
    Gomes NP, Bjerke G, Llorente B, Szostek SA, Emerson BM, Espinosa JM.
    Genes Dev; 2006 Mar 01; 20(5):601-12. PubMed ID: 16510875
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Specific interaction of the transcription elongation regulator TCERG1 with RNA polymerase II requires simultaneous phosphorylation at Ser2, Ser5, and Ser7 within the carboxyl-terminal domain repeat.
    Liu J, Fan S, Lee CJ, Greenleaf AL, Zhou P.
    J Biol Chem; 2013 Apr 12; 288(15):10890-901. PubMed ID: 23436654
    [Abstract] [Full Text] [Related]

  • 10. Ser7 phosphorylation of the CTD recruits the RPAP2 Ser5 phosphatase to snRNA genes.
    Egloff S, Zaborowska J, Laitem C, Kiss T, Murphy S.
    Mol Cell; 2012 Jan 13; 45(1):111-22. PubMed ID: 22137580
    [Abstract] [Full Text] [Related]

  • 11. Regulation of polymerase II transcription by 7SK snRNA: two distinct RNA elements direct P-TEFb and HEXIM1 binding.
    Egloff S, Van Herreweghe E, Kiss T.
    Mol Cell Biol; 2006 Jan 13; 26(2):630-42. PubMed ID: 16382153
    [Abstract] [Full Text] [Related]

  • 12. Substrate Specificity of the Kinase P-TEFb towards the RNA Polymerase II C-Terminal Domain.
    Gibbs EB, Laremore TN, Usher GA, Portz B, Cook EC, Showalter SA.
    Biophys J; 2017 Nov 07; 113(9):1909-1911. PubMed ID: 28992937
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. A human immunodeficiency virus type 1 Tat-like arginine-rich RNA-binding domain is essential for HEXIM1 to inhibit RNA polymerase II transcription through 7SK snRNA-mediated inactivation of P-TEFb.
    Yik JH, Chen R, Pezda AC, Samford CS, Zhou Q.
    Mol Cell Biol; 2004 Jun 07; 24(12):5094-105. PubMed ID: 15169877
    [Abstract] [Full Text] [Related]

  • 15. Interactions between the aryl hydrocarbon receptor and P-TEFb. Sequential recruitment of transcription factors and differential phosphorylation of C-terminal domain of RNA polymerase II at cyp1a1 promoter.
    Tian Y, Ke S, Chen M, Sheng T.
    J Biol Chem; 2003 Nov 07; 278(45):44041-8. PubMed ID: 12917420
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Binding of the 7SK snRNA turns the HEXIM1 protein into a P-TEFb (CDK9/cyclin T) inhibitor.
    Michels AA, Fraldi A, Li Q, Adamson TE, Bonnet F, Nguyen VT, Sedore SC, Price JP, Price DH, Lania L, Bensaude O.
    EMBO J; 2004 Jul 07; 23(13):2608-19. PubMed ID: 15201869
    [Abstract] [Full Text] [Related]

  • 18. A model of repression: CTD analogs and PIE-1 inhibit transcriptional elongation by P-TEFb.
    Zhang F, Barboric M, Blackwell TK, Peterlin BM.
    Genes Dev; 2003 Mar 15; 17(6):748-58. PubMed ID: 12651893
    [Abstract] [Full Text] [Related]

  • 19. Transcribing RNA polymerase II is phosphorylated at CTD residue serine-7.
    Chapman RD, Heidemann M, Albert TK, Mailhammer R, Flatley A, Meisterernst M, Kremmer E, Eick D.
    Science; 2007 Dec 14; 318(5857):1780-2. PubMed ID: 18079404
    [Abstract] [Full Text] [Related]

  • 20. T-loop phosphorylated Cdk9 localizes to nuclear speckle domains which may serve as sites of active P-TEFb function and exchange between the Brd4 and 7SK/HEXIM1 regulatory complexes.
    Dow EC, Liu H, Rice AP.
    J Cell Physiol; 2010 Jul 14; 224(1):84-93. PubMed ID: 20201073
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 19.