These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


164 related items for PubMed ID: 22588573

  • 1. Intention-based EMG control for powered exoskeletons.
    Lenzi T, De Rossi SM, Vitiello N, Carrozza MC.
    IEEE Trans Biomed Eng; 2012 Aug; 59(8):2180-90. PubMed ID: 22588573
    [Abstract] [Full Text] [Related]

  • 2. Proportional EMG control for upper-limb powered exoskeletons.
    Lenzi T, De Rossi SM, Vitiello N, Carrozza MC.
    Annu Int Conf IEEE Eng Med Biol Soc; 2011 Aug; 2011():628-31. PubMed ID: 22254387
    [Abstract] [Full Text] [Related]

  • 3. Movement stability analysis of surface electromyography-based elbow power assistance.
    Kwon S, Kim Y, Kim J.
    IEEE Trans Biomed Eng; 2014 Apr; 61(4):1134-42. PubMed ID: 24658238
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Neuromuscular interfacing: establishing an EMG-driven model for the human elbow joint.
    Pau JW, Xie SS, Pullan AJ.
    IEEE Trans Biomed Eng; 2012 Sep; 59(9):2586-93. PubMed ID: 22911536
    [Abstract] [Full Text] [Related]

  • 7. Mechanics and energetics of level walking with powered ankle exoskeletons.
    Sawicki GS, Ferris DP.
    J Exp Biol; 2008 May; 211(Pt 9):1402-13. PubMed ID: 18424674
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. An EMG-based robot control scheme robust to time-varying EMG signal features.
    Artemiadis PK, Kyriakopoulos KJ.
    IEEE Trans Inf Technol Biomed; 2010 May; 14(3):582-8. PubMed ID: 20172839
    [Abstract] [Full Text] [Related]

  • 10. Feasibility of using EMG driven neuromusculoskeletal model for prediction of dynamic movement of the elbow.
    Koo TK, Mak AF.
    J Electromyogr Kinesiol; 2005 Feb; 15(1):12-26. PubMed ID: 15642650
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Physiological and kinematic effects of a soft exosuit on arm movements.
    Xiloyannis M, Chiaradia D, Frisoli A, Masia L.
    J Neuroeng Rehabil; 2019 Feb 22; 16(1):29. PubMed ID: 30791919
    [Abstract] [Full Text] [Related]

  • 14. Adaptive Control of Exoskeleton Robots for Periodic Assistive Behaviours Based on EMG Feedback Minimisation.
    Peternel L, Noda T, Petrič T, Ude A, Morimoto J, Babič J.
    PLoS One; 2016 Feb 22; 11(2):e0148942. PubMed ID: 26881743
    [Abstract] [Full Text] [Related]

  • 15. sEMG-based joint force control for an upper-limb power-assist exoskeleton robot.
    Li Z, Wang B, Sun F, Yang C, Xie Q, Zhang W.
    IEEE J Biomed Health Inform; 2014 May 22; 18(3):1043-50. PubMed ID: 24235314
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. EMG-based neuro-fuzzy control of a 4DOF upper-limb power-assist exoskeleton.
    Kiguchi K, Imada Y, Liyanage M.
    Annu Int Conf IEEE Eng Med Biol Soc; 2007 May 22; 2007():3040-3. PubMed ID: 18002635
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Human-robot synchrony: flexible assistance using adaptive oscillators.
    Ronsse R, Vitiello N, Lenzi T, van den Kieboom J, Carrozza MC, Ijspeert AJ.
    IEEE Trans Biomed Eng; 2011 Apr 22; 58(4):1001-12. PubMed ID: 20977981
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.