These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


198 related items for PubMed ID: 22592063

  • 21. Recovery of hand function in virtual reality: Training hemiparetic hand and arm together or separately.
    Adamovich S, Fluet GG, Merians AS, Mathai A, Qiu Q.
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3475-8. PubMed ID: 19163457
    [Abstract] [Full Text] [Related]

  • 22. Does assist-as-needed upper limb robotic therapy promote participation in repetitive activity-based motor training in sub-acute stroke patients with severe paresis?
    Grosmaire AG, Duret C.
    NeuroRehabilitation; 2017; 41(1):31-39. PubMed ID: 28527224
    [Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24. A randomized controlled trial of gravity-supported, computer-enhanced arm exercise for individuals with severe hemiparesis.
    Housman SJ, Scott KM, Reinkensmeyer DJ.
    Neurorehabil Neural Repair; 2009 Jun; 23(5):505-14. PubMed ID: 19237734
    [Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27. Transfer of training between distinct motor tasks after stroke: implications for task-specific approaches to upper-extremity neurorehabilitation.
    Schaefer SY, Patterson CB, Lang CE.
    Neurorehabil Neural Repair; 2013 Sep; 27(7):602-12. PubMed ID: 23549521
    [Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29. Home-based Computer Assisted Arm Rehabilitation (hCAAR) robotic device for upper limb exercise after stroke: results of a feasibility study in home setting.
    Sivan M, Gallagher J, Makower S, Keeling D, Bhakta B, O'Connor RJ, Levesley M.
    J Neuroeng Rehabil; 2014 Dec 12; 11():163. PubMed ID: 25495889
    [Abstract] [Full Text] [Related]

  • 30. Efficacy of robot-assisted rehabilitation for the functional recovery of the upper limb in post-stroke patients: a randomized controlled study.
    Taveggia G, Borboni A, Salvi L, Mulé C, Fogliaresi S, Villafañe JH, Casale R.
    Eur J Phys Rehabil Med; 2016 Dec 12; 52(6):767-773. PubMed ID: 27406879
    [Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33. Correlations between statistical models of robotically collected kinematics and clinical measures of upper extremity function.
    Rohafza M, Fluet GG, Qiu Q, Adamovich S.
    Annu Int Conf IEEE Eng Med Biol Soc; 2012 Dec 12; 2012():4120-3. PubMed ID: 23366834
    [Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35. Design of a complex virtual reality simulation to train finger motion for persons with hemiparesis: a proof of concept study.
    Adamovich SV, Fluet GG, Mathai A, Qiu Q, Lewis J, Merians AS.
    J Neuroeng Rehabil; 2009 Jul 17; 6():28. PubMed ID: 19615045
    [Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39. Interfacing a haptic robotic system with complex virtual environments to treat impaired upper extremity motor function in children with cerebral palsy.
    Fluet GG, Qiu Q, Kelly D, Parikh HD, Ramirez D, Saleh S, Adamovich SV.
    Dev Neurorehabil; 2010 Jul 17; 13(5):335-45. PubMed ID: 20828330
    [Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 10.