These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


205 related items for PubMed ID: 22612622

  • 1. Neuroaxonal regeneration is more pronounced in early multiple sclerosis than in traumatic brain injury lesions.
    Schirmer L, Merkler D, König FB, Brück W, Stadelmann C.
    Brain Pathol; 2013 Jan; 23(1):2-12. PubMed ID: 22612622
    [Abstract] [Full Text] [Related]

  • 2. Axonal loss and neurofilament phosphorylation changes accompany lesion development and clinical progression in multiple sclerosis.
    Schirmer L, Antel JP, Brück W, Stadelmann C.
    Brain Pathol; 2011 Jul; 21(4):428-40. PubMed ID: 21114565
    [Abstract] [Full Text] [Related]

  • 3. Relationship of calpain-mediated proteolysis to the expression of axonal and synaptic plasticity markers following traumatic brain injury in mice.
    Thompson SN, Gibson TR, Thompson BM, Deng Y, Hall ED.
    Exp Neurol; 2006 Sep; 201(1):253-65. PubMed ID: 16814284
    [Abstract] [Full Text] [Related]

  • 4. Mild traumatic brain injury to the infant mouse causes robust white matter axonal degeneration which precedes apoptotic death of cortical and thalamic neurons.
    Dikranian K, Cohen R, Mac Donald C, Pan Y, Brakefield D, Bayly P, Parsadanian A.
    Exp Neurol; 2008 Jun; 211(2):551-60. PubMed ID: 18440507
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Characterization of a prolonged regenerative attempt by diffusely injured axons following traumatic brain injury in adult cat: a light and electron microscopic immunocytochemical study.
    Christman CW, Salvant JB, Walker SA, Povlishock JT.
    Acta Neuropathol; 1997 Oct; 94(4):329-37. PubMed ID: 9341933
    [Abstract] [Full Text] [Related]

  • 8. Phagocytosis of neuronal debris by microglia is associated with neuronal damage in multiple sclerosis.
    Huizinga R, van der Star BJ, Kipp M, Jong R, Gerritsen W, Clarner T, Puentes F, Dijkstra CD, van der Valk P, Amor S.
    Glia; 2012 Mar; 60(3):422-31. PubMed ID: 22161990
    [Abstract] [Full Text] [Related]

  • 9. In vivo monitoring of neuronal loss in traumatic brain injury: a microdialysis study.
    Petzold A, Tisdall MM, Girbes AR, Martinian L, Thom M, Kitchen N, Smith M.
    Brain; 2011 Feb; 134(Pt 2):464-83. PubMed ID: 21278408
    [Abstract] [Full Text] [Related]

  • 10. Wallerian degeneration: a major component of early axonal pathology in multiple sclerosis.
    Dziedzic T, Metz I, Dallenga T, König FB, Müller S, Stadelmann C, Brück W.
    Brain Pathol; 2010 Sep; 20(5):976-85. PubMed ID: 20477831
    [Abstract] [Full Text] [Related]

  • 11. Limiting multiple sclerosis related axonopathy by blocking Nogo receptor and CRMP-2 phosphorylation.
    Petratos S, Ozturk E, Azari MF, Kenny R, Lee JY, Magee KA, Harvey AR, McDonald C, Taghian K, Moussa L, Mun Aui P, Siatskas C, Litwak S, Fehlings MG, Strittmatter SM, Bernard CC.
    Brain; 2012 Jun; 135(Pt 6):1794-818. PubMed ID: 22544872
    [Abstract] [Full Text] [Related]

  • 12. Mechanisms of neuronal dysfunction and degeneration in multiple sclerosis.
    Dutta R, Trapp BD.
    Prog Neurobiol; 2011 Jan; 93(1):1-12. PubMed ID: 20946934
    [Abstract] [Full Text] [Related]

  • 13. CLARITY reveals a more protracted temporal course of axon swelling and disconnection than previously described following traumatic brain injury.
    Weber MT, Arena JD, Xiao R, Wolf JA, Johnson VE.
    Brain Pathol; 2019 May; 29(3):437-450. PubMed ID: 30444552
    [Abstract] [Full Text] [Related]

  • 14. Temporal and regional patterns of axonal damage following traumatic brain injury: a beta-amyloid precursor protein immunocytochemical study in rats.
    Bramlett HM, Kraydieh S, Green EJ, Dietrich WD.
    J Neuropathol Exp Neurol; 1997 Oct; 56(10):1132-41. PubMed ID: 9329457
    [Abstract] [Full Text] [Related]

  • 15. Neuroaxonal pathology in Creutzfeldt-Jakob disease.
    Liberski PP, Budka H.
    Acta Neuropathol; 1999 Apr; 97(4):329-34. PubMed ID: 10208271
    [Abstract] [Full Text] [Related]

  • 16. Partial interruption of axonal transport due to microtubule breakage accounts for the formation of periodic varicosities after traumatic axonal injury.
    Tang-Schomer MD, Johnson VE, Baas PW, Stewart W, Smith DH.
    Exp Neurol; 2012 Jan; 233(1):364-72. PubMed ID: 22079153
    [Abstract] [Full Text] [Related]

  • 17. Characterisation of the effect of knockout of the amyloid precursor protein on outcome following mild traumatic brain injury.
    Corrigan F, Vink R, Blumbergs PC, Masters CL, Cappai R, van den Heuvel C.
    Brain Res; 2012 Apr 27; 1451():87-99. PubMed ID: 22424792
    [Abstract] [Full Text] [Related]

  • 18. Accumulation of cortical hyperphosphorylated neurofilaments as a marker of neurodegeneration in multiple sclerosis.
    Gray E, Rice C, Nightingale H, Ginty M, Hares K, Kemp K, Cohen N, Love S, Scolding N, Wilkins A.
    Mult Scler; 2013 Feb 27; 19(2):153-61. PubMed ID: 22723571
    [Abstract] [Full Text] [Related]

  • 19. Quantitative analysis of the relationship between intra- axonal neurofilament compaction and impaired axonal transport following diffuse traumatic brain injury.
    Marmarou CR, Walker SA, Davis CL, Povlishock JT.
    J Neurotrauma; 2005 Oct 27; 22(10):1066-80. PubMed ID: 16238484
    [Abstract] [Full Text] [Related]

  • 20. Increased expression of vasopressin v1a receptors after traumatic brain injury.
    Szmydynger-Chodobska J, Chung I, Koźniewska E, Tran B, Harrington FJ, Duncan JA, Chodobski A.
    J Neurotrauma; 2004 Aug 27; 21(8):1090-102. PubMed ID: 15319008
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.