These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


536 related items for PubMed ID: 22612930

  • 1. A model of ruminal volatile fatty acid absorption kinetics and rumen epithelial blood flow in lactating Holstein cows.
    Storm AC, Kristensen NB, Hanigan MD.
    J Dairy Sci; 2012 Jun; 95(6):2919-34. PubMed ID: 22612930
    [Abstract] [Full Text] [Related]

  • 2. Effects of ruminal ammonia and butyrate concentrations on reticuloruminal epithelial blood flow and volatile fatty acid absorption kinetics under washed reticulorumen conditions in lactating dairy cows.
    Storm AC, Hanigan MD, Kristensen NB.
    J Dairy Sci; 2011 Aug; 94(8):3980-94. PubMed ID: 21787934
    [Abstract] [Full Text] [Related]

  • 3. Effects of particle size and dry matter content of a total mixed ration on intraruminal equilibration and net portal flux of volatile fatty acids in lactating dairy cows.
    Storm AC, Kristensen NB.
    J Dairy Sci; 2010 Sep; 93(9):4223-38. PubMed ID: 20723696
    [Abstract] [Full Text] [Related]

  • 4. Evaluation of models to predict the stoichiometry of volatile fatty acid profiles in rumen fluid of lactating Holstein cows.
    Morvay Y, Bannink A, France J, Kebreab E, Dijkstra J.
    J Dairy Sci; 2011 Jun; 94(6):3063-80. PubMed ID: 21605776
    [Abstract] [Full Text] [Related]

  • 5. Effect of increasing ruminal butyrate absorption on splanchnic metabolism of volatile fatty acids absorbed from the washed reticulorumen of steers.
    Kristensen NB, Harmon DL.
    J Anim Sci; 2004 Dec; 82(12):3549-59. PubMed ID: 15537776
    [Abstract] [Full Text] [Related]

  • 6. Splanchnic metabolism of volatile fatty acids absorbed from the washed reticulorumen of steers.
    Kristensen NB, Harmon DL.
    J Anim Sci; 2004 Jul; 82(7):2033-42. PubMed ID: 15309950
    [Abstract] [Full Text] [Related]

  • 7. Comparison of techniques to determine the clearance of ruminal volatile fatty acids.
    Resende Júnior JC, Pereira MN, Bôer H, Tamminga S.
    J Dairy Sci; 2006 Aug; 89(8):3096-106. PubMed ID: 16840627
    [Abstract] [Full Text] [Related]

  • 8. Evaluation of predictions of volatile fatty acid production rates by the Molly cow model.
    Ghimire S, Gregorini P, Hanigan MD.
    J Dairy Sci; 2014 Aug; 97(1):354-62. PubMed ID: 24268399
    [Abstract] [Full Text] [Related]

  • 9. Feeding lactose increases ruminal butyrate and plasma beta-hydroxybutyrate in lactating dairy cows.
    DeFrain JM, Hippen AR, Kalscheur KF, Schingoethe DJ.
    J Dairy Sci; 2004 Aug; 87(8):2486-94. PubMed ID: 15328272
    [Abstract] [Full Text] [Related]

  • 10. The relationship between rumen acidosis resistance and expression of genes involved in regulation of intracellular pH and butyrate metabolism of ruminal epithelial cells in steers.
    Schlau N, Guan LL, Oba M.
    J Dairy Sci; 2012 Oct; 95(10):5866-75. PubMed ID: 22863095
    [Abstract] [Full Text] [Related]

  • 11. Representing interconversions among volatile fatty acids in the Molly cow model.
    Ghimire S, Kohn RA, Gregorini P, White RR, Hanigan MD.
    J Dairy Sci; 2017 May; 100(5):3658-3671. PubMed ID: 28259412
    [Abstract] [Full Text] [Related]

  • 12. Net flux of nutrients across the rumen wall of lactating dairy cows as influenced by dietary supplements of folic acid.
    Girard CL, Benchaar C, Chiquette J, Desrochers A.
    J Dairy Sci; 2009 Dec; 92(12):6116-22. PubMed ID: 19923614
    [Abstract] [Full Text] [Related]

  • 13. Metabolism of silage alcohols in lactating dairy cows.
    Kristensen NB, Storm A, Raun BM, Røjen BA, Harmon DL.
    J Dairy Sci; 2007 Mar; 90(3):1364-77. PubMed ID: 17297111
    [Abstract] [Full Text] [Related]

  • 14. Ruminant Nutrition Symposium: Role of fermentation acid absorption in the regulation of ruminal pH.
    Aschenbach JR, Penner GB, Stumpff F, Gäbel G.
    J Anim Sci; 2011 Apr; 89(4):1092-107. PubMed ID: 20952531
    [Abstract] [Full Text] [Related]

  • 15. Estimation of the stoichiometry of volatile fatty acid production in the rumen of lactating cows.
    Bannink A, Kogut J, Dijkstra J, France J, Kebreab E, Van Vuuren AM, Tamminga S.
    J Theor Biol; 2006 Jan 07; 238(1):36-51. PubMed ID: 16111711
    [Abstract] [Full Text] [Related]

  • 16. Prediction of ruminal pH from pasture-based diets.
    Kolver ES, de Veth MJ.
    J Dairy Sci; 2002 May 07; 85(5):1255-66. PubMed ID: 12086063
    [Abstract] [Full Text] [Related]

  • 17. Using a novel macro in vitro technique to estimate differences in absorption rates of volatile fatty acids in the rumen.
    Udén P.
    J Anim Physiol Anim Nutr (Berl); 2011 Feb 07; 95(1):27-33. PubMed ID: 20487097
    [Abstract] [Full Text] [Related]

  • 18. Effects of ruminal versus duodenal dosing of fish meal on ruminal fermentation and milk composition.
    Calsamiglia S, Caja G, Stern MD, Crooker BA.
    J Dairy Sci; 1995 Sep 07; 78(9):1999-2007. PubMed ID: 8550909
    [Abstract] [Full Text] [Related]

  • 19. Effect of essential oil active compounds on rumen microbial fermentation and nutrient flow in in vitro systems.
    Castillejos L, Calsamiglia S, Ferret A.
    J Dairy Sci; 2006 Jul 07; 89(7):2649-58. PubMed ID: 16772584
    [Abstract] [Full Text] [Related]

  • 20. The effects of a garlic oil chemical compound, propyl-propane thiosulfonate, on ruminal fermentation and fatty acid outflow in a dual-flow continuous culture system.
    Foskolos A, Siurana A, Rodriquez-Prado M, Ferret A, Bravo D, Calsamiglia S.
    J Dairy Sci; 2015 Aug 07; 98(8):5482-91. PubMed ID: 26004834
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 27.