These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
331 related items for PubMed ID: 22619545
21. Comparative investigation of porous nano-hydroxyapaptite/chitosan, nano-zirconia/chitosan and novel nano-calcium zirconate/chitosan composite scaffolds for their potential applications in bone regeneration. Gaihre B, Jayasuriya AC. Mater Sci Eng C Mater Biol Appl; 2018 Oct 01; 91():330-339. PubMed ID: 30033262 [Abstract] [Full Text] [Related]
22. Bioactive injectable triple acting thermosensitive hydrogel enriched with nano-hydroxyapatite for bone regeneration: in-vitro characterization, Saos-2 cell line cell viability and osteogenic markers evaluation. Morsi NM, Nabil Shamma R, Osama Eladawy N, Abdelkhalek AA. Drug Dev Ind Pharm; 2019 May 01; 45(5):787-804. PubMed ID: 30672348 [Abstract] [Full Text] [Related]
23. Carbon nanotubes play an important role in the spatial arrangement of calcium deposits in hydrogels for bone regeneration. Cancian G, Tozzi G, Hussain AA, De Mori A, Roldo M. J Mater Sci Mater Med; 2016 Aug 01; 27(8):126. PubMed ID: 27324780 [Abstract] [Full Text] [Related]
24. An efficient method to prepare magnetic hydroxyapatite-functionalized multi-walled carbon nanotubes nanocomposite for bone defects. Afroze JD, Abden MJ, Islam MA. Mater Sci Eng C Mater Biol Appl; 2018 May 01; 86():95-102. PubMed ID: 29525102 [Abstract] [Full Text] [Related]
25. Preparation and characterization of a multilayer biomimetic scaffold for bone tissue engineering. Kong L, Ao Q, Wang A, Gong K, Wang X, Lu G, Gong Y, Zhao N, Zhang X. J Biomater Appl; 2007 Nov 01; 22(3):223-39. PubMed ID: 17255157 [Abstract] [Full Text] [Related]
26. Biomimetic helical rosette nanotubes and nanocrystalline hydroxyapatite coatings on titanium for improving orthopedic implants. Zhang L, Chen Y, Rodriguez J, Fenniri H, Webster TJ. Int J Nanomedicine; 2008 Nov 01; 3(3):323-33. PubMed ID: 18990941 [Abstract] [Full Text] [Related]
28. Biomimetic bone tissue engineering hydrogel scaffolds constructed using ordered CNTs and HA induce the proliferation and differentiation of BMSCs. Liu L, Yang B, Wang LQ, Huang JP, Chen WY, Ban Q, Zhang Y, You R, Yin L, Guan YQ. J Mater Chem B; 2020 Jan 22; 8(3):558-567. PubMed ID: 31854433 [Abstract] [Full Text] [Related]
29. Poly-3-hydroxybutyrate-co-3-hydroxyvalerate containing scaffolds and their integration with osteoblasts as a model for bone tissue engineering. Zhang S, Prabhakaran MP, Qin X, Ramakrishna S. J Biomater Appl; 2015 May 22; 29(10):1394-406. PubMed ID: 25592285 [Abstract] [Full Text] [Related]
30. Mussel-Inspired Bisphosphonated Injectable Nanocomposite Hydrogels with Adhesive, Self-Healing, and Osteogenic Properties for Bone Regeneration. Wang B, Liu J, Niu D, Wu N, Yun W, Wang W, Zhang K, Li G, Yan S, Xu G, Yin J. ACS Appl Mater Interfaces; 2021 Jul 21; 13(28):32673-32689. PubMed ID: 34227792 [Abstract] [Full Text] [Related]
32. Nanohydroxyapatite-reinforced chitosan composite hydrogel for bone tissue repair in vitro and in vivo. Dhivya S, Saravanan S, Sastry TP, Selvamurugan N. J Nanobiotechnology; 2015 Jun 12; 13():40. PubMed ID: 26065678 [Abstract] [Full Text] [Related]
33. Biomimetic mineralization of novel hydroxyethyl cellulose/soy protein isolate scaffolds promote bone regeneration in vitro and in vivo. Wu M, Wu P, Xiao L, Zhao Y, Yan F, Liu X, Xie Y, Zhang C, Chen Y, Cai L. Int J Biol Macromol; 2020 Nov 01; 162():1627-1641. PubMed ID: 32781127 [Abstract] [Full Text] [Related]
34. Biomimetic porous scaffolds containing decellularized small intestinal submucosa and Sr2+/Fe3+co-doped hydroxyapatite accelerate angiogenesis/osteogenesis for bone regeneration. Cui W, Yang L, Ullah I, Yu K, Zhao Z, Gao X, Liu T, Liu M, Li P, Wang J, Guo X. Biomed Mater; 2022 Feb 02; 17(2):. PubMed ID: 35026740 [Abstract] [Full Text] [Related]
35. A novel porous aspirin-loaded (GO/CTS-HA)n nanocomposite films: Synthesis and multifunction for bone tissue engineering. Ji M, Li H, Guo H, Xie A, Wang S, Huang F, Li S, Shen Y, He J. Carbohydr Polym; 2016 Nov 20; 153():124-132. PubMed ID: 27561479 [Abstract] [Full Text] [Related]
36. Nanocrystalline spherical hydroxyapatite granules for bone repair: in vitro evaluation with osteoblast-like cells and osteoclasts. Bernhardt A, Dittrich R, Lode A, Despang F, Gelinsky M. J Mater Sci Mater Med; 2013 Jul 20; 24(7):1755-66. PubMed ID: 23625348 [Abstract] [Full Text] [Related]
37. Fabrication and characterization of hydroxypropyl guar-poly (vinyl alcohol)-nano hydroxyapatite composite hydrogels for bone tissue engineering. Parameswaran-Thankam A, Al-Anbaky Q, Al-Karakooly Z, RanguMagar AB, Chhetri BP, Ali N, Ghosh A. J Biomater Sci Polym Ed; 2018 Dec 20; 29(17):2083-2105. PubMed ID: 29962278 [Abstract] [Full Text] [Related]
38. Biocomposite scaffolds for bone regeneration: Role of chitosan and hydroxyapatite within poly-3-hydroxybutyrate-co-3-hydroxyvalerate on mechanical properties and in vitro evaluation. Zhang S, Prabhakaran MP, Qin X, Ramakrishna S. J Mech Behav Biomed Mater; 2015 Nov 20; 51():88-98. PubMed ID: 26232670 [Abstract] [Full Text] [Related]
39. Chitosan-hybrid poss nanocomposites for bone regeneration: The effect of poss nanocage on surface, morphology, structure and in vitro bioactivity. Tamburaci S, Tihminlioglu F. Int J Biol Macromol; 2020 Jan 01; 142():643-657. PubMed ID: 31622724 [Abstract] [Full Text] [Related]
40. Effect of cellulose nanocrystals on scaffolds comprising chitosan, alginate and hydroxyapatite for bone tissue engineering. Shaheen TI, Montaser AS, Li S. Int J Biol Macromol; 2019 Jan 01; 121():814-821. PubMed ID: 30342123 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]