These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


331 related items for PubMed ID: 22619545

  • 41.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 42. Silicon substituted hydroxyapatite/VEGF scaffolds stimulate bone regeneration in osteoporotic sheep.
    Casarrubios L, Gómez-Cerezo N, Sánchez-Salcedo S, Feito MJ, Serrano MC, Saiz-Pardo M, Ortega L, de Pablo D, Díaz-Güemes I, Fernández-Tomé B, Enciso S, Sánchez-Margallo FM, Portolés MT, Arcos D, Vallet-Regí M.
    Acta Biomater; 2020 Jan 01; 101():544-553. PubMed ID: 31678741
    [Abstract] [Full Text] [Related]

  • 43. Injectable scaffolds for bone regeneration.
    Yasmeen S, Lo MK, Bajracharya S, Roldo M.
    Langmuir; 2014 Nov 04; 30(43):12977-85. PubMed ID: 25296391
    [Abstract] [Full Text] [Related]

  • 44.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 45.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 46.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 47. 3-Dimensional cell-laden nano-hydroxyapatite/protein hydrogels for bone regeneration applications.
    Sadat-Shojai M, Khorasani MT, Jamshidi A.
    Mater Sci Eng C Mater Biol Appl; 2015 Apr 04; 49():835-843. PubMed ID: 25687015
    [Abstract] [Full Text] [Related]

  • 48.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 49. PDLLA honeycomb-like scaffolds with a high loading of superhydrophilic graphene/multi-walled carbon nanotubes promote osteoblast in vitro functions and guided in vivo bone regeneration.
    Silva E, Vasconcellos LMR, Rodrigues BVM, Dos Santos DM, Campana-Filho SP, Marciano FR, Webster TJ, Lobo AO.
    Mater Sci Eng C Mater Biol Appl; 2017 Apr 01; 73():31-39. PubMed ID: 28183613
    [Abstract] [Full Text] [Related]

  • 50.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 51.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 52.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 53.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 54.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 55. Fabrication of cancellous biomimetic chitosan-based nanocomposite scaffolds applying a combinational method for bone tissue engineering.
    Jamalpoor Z, Mirzadeh H, Joghataei MT, Zeini D, Bagheri-Khoulenjani S, Nourani MR.
    J Biomed Mater Res A; 2015 May 01; 103(5):1882-92. PubMed ID: 25195588
    [Abstract] [Full Text] [Related]

  • 56.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 57.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 58. Chitosan-based nanocomposites for the repair of bone defects.
    Keller L, Regiel-Futyra A, Gimeno M, Eap S, Mendoza G, Andreu V, Wagner Q, Kyzioł A, Sebastian V, Stochel G, Arruebo M, Benkirane-Jessel N.
    Nanomedicine; 2017 Oct 01; 13(7):2231-2240. PubMed ID: 28647591
    [Abstract] [Full Text] [Related]

  • 59. Fabrication and characterization of nanobiocomposite scaffold of zein/chitosan/nanohydroxyapatite prepared by freeze-drying method for bone tissue engineering.
    Shahbazarab Z, Teimouri A, Chermahini AN, Azadi M.
    Int J Biol Macromol; 2018 Mar 01; 108():1017-1027. PubMed ID: 29122713
    [Abstract] [Full Text] [Related]

  • 60. Constructing a biomimetic nanocomposite with the in situ deposition of spherical hydroxyapatite nanoparticles to induce bone regeneration.
    Song T, Zhao F, Wang Y, Li D, Lei N, Li X, Xiao Y, Zhang X.
    J Mater Chem B; 2021 Mar 17; 9(10):2469-2482. PubMed ID: 33646220
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 17.