These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


267 related items for PubMed ID: 22623482

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23. Repeated transspinal stimulation decreases soleus H-reflex excitability and restores spinal inhibition in human spinal cord injury.
    Knikou M, Murray LM.
    PLoS One; 2019; 14(9):e0223135. PubMed ID: 31557238
    [Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25. Combined neuromuscular electrical stimulation and transcutaneous spinal direct current stimulation increases motor cortical plasticity in healthy humans.
    Koseki T, Kudo D, Yoshida K, Nito M, Takano K, Jin M, Tanabe S, Sato T, Katoh H, Yamaguchi T.
    Front Neurosci; 2022; 16():1034451. PubMed ID: 37091256
    [Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27. Transcutaneous Spinal Direct Current Stimulation Alters Resting-State Functional Connectivity.
    Schweizer L, Meyer-Frießem CH, Zahn PK, Tegenthoff M, Schmidt-Wilcke T.
    Brain Connect; 2017 Aug; 7(6):357-365. PubMed ID: 28554230
    [Abstract] [Full Text] [Related]

  • 28. An unexpected target of spinal direct current stimulation: Interhemispheric connectivity in humans.
    Bocci T, Caleo M, Vannini B, Vergari M, Cogiamanian F, Rossi S, Priori A, Sartucci F.
    J Neurosci Methods; 2015 Oct 30; 254():18-26. PubMed ID: 26213216
    [Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32. Increased short latency afferent inhibition after anodal transcranial direct current stimulation.
    Scelzo E, Giannicola G, Rosa M, Ciocca M, Ardolino G, Cogiamanian F, Ferrucci R, Fumagalli M, Mameli F, Barbieri S, Priori A.
    Neurosci Lett; 2011 Jul 08; 498(2):167-70. PubMed ID: 21600266
    [Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34. Transcutaneous spinal direct current stimulation induces lasting fatigue resistance and enhances explosive vertical jump performance.
    Berry HR, Tate RJ, Conway BA.
    PLoS One; 2017 Jul 08; 12(4):e0173846. PubMed ID: 28379980
    [Abstract] [Full Text] [Related]

  • 35. Transspinal Direct Current Stimulation Produces Persistent Plasticity in Human Motor Pathways.
    Murray LM, Tahayori B, Knikou M.
    Sci Rep; 2018 Jan 15; 8(1):717. PubMed ID: 29335430
    [Abstract] [Full Text] [Related]

  • 36. Pathway-specific plasticity in the human spinal cord.
    Leukel C, Taube W, Beck S, Schubert M.
    Eur J Neurosci; 2012 May 15; 35(10):1622-9. PubMed ID: 22487124
    [Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38. Anodal transcutaneous spinal direct current stimulation influences the amplitude of pain-related evoked potentials in healthy subjects.
    Eberhardt F, Enax-Krumova E, Tegenthoff M, Höffken O, Özgül ÖS.
    Sci Rep; 2023 Nov 27; 13(1):20920. PubMed ID: 38016967
    [Abstract] [Full Text] [Related]

  • 39. H reflex and spinal excitability: methodological considerations.
    Grosprêtre S, Martin A.
    J Neurophysiol; 2012 Mar 27; 107(6):1649-54. PubMed ID: 22190624
    [Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 14.