These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


257 related items for PubMed ID: 22626747

  • 1. Anti-inflammatory homoisoflavonoids from the tuberous roots of Ophiopogon japonicus.
    Li N, Zhang JY, Zeng KW, Zhang L, Che YY, Tu PF.
    Fitoterapia; 2012 Sep; 83(6):1042-5. PubMed ID: 22626747
    [Abstract] [Full Text] [Related]

  • 2. Homoisoflavonoid derivatives from the roots of Ophiopogon japonicus and their in vitro anti-inflammation activity.
    Hung TM, Thu CV, Dat NT, Ryoo SW, Lee JH, Kim JC, Na M, Jung HJ, Bae K, Min BS.
    Bioorg Med Chem Lett; 2010 Apr 15; 20(8):2412-6. PubMed ID: 20346658
    [Abstract] [Full Text] [Related]

  • 3. Phenylethanoid glycosides with anti-inflammatory activities from the stems of Cistanche deserticola cultured in Tarim desert.
    Nan ZD, Zeng KW, Shi SP, Zhao MB, Jiang Y, Tu PF.
    Fitoterapia; 2013 Sep 15; 89():167-74. PubMed ID: 23685247
    [Abstract] [Full Text] [Related]

  • 4. Anti-neuroinflammatory constituents from Polygala tricornis Gagnep.
    Li J, Zeng KW, Shi SP, Jiang Y, Tu PF.
    Fitoterapia; 2012 Jul 15; 83(5):896-900. PubMed ID: 22498345
    [Abstract] [Full Text] [Related]

  • 5. Cytotoxic Homoisoflavonoids from Ophiopogon japonicus Tubers.
    Dang NH, Chung ND, Tuan HM, Hiep NT, Dat NT.
    Chem Pharm Bull (Tokyo); 2017 Feb 01; 65(2):204-207. PubMed ID: 27916782
    [Abstract] [Full Text] [Related]

  • 6. Five new homoisoflavonoids from the tuber of Ophiopogon japonicus.
    Chang JM, Shen CC, Huang YL, Chien MY, Ou JC, Shieh BJ, Chen CC.
    J Nat Prod; 2002 Nov 01; 65(11):1731-3. PubMed ID: 12444717
    [Abstract] [Full Text] [Related]

  • 7. Two new homoisoflavonoids from the fibrous roots of Ophiopogon japonicus (Thunb.) Ker-Gawl.
    Duan CL, Kang ZY, Lin CR, Jiang Y, Liu JX, Tu PF.
    J Asian Nat Prod Res; 2009 Oct 01; 11(10):876-9. PubMed ID: 20183249
    [Abstract] [Full Text] [Related]

  • 8. Cytotoxic steroidal saponins from Ophiopogon japonicus.
    Li N, Zhang L, Zeng KW, Zhou Y, Zhang JY, Che YY, Tu PF.
    Steroids; 2013 Jan 01; 78(1):1-7. PubMed ID: 23123739
    [Abstract] [Full Text] [Related]

  • 9. New steroids and sesquiterpene from Turraea pubescens.
    Yuan CM, Tang GH, Wang XY, Zhang Y, Cao MM, Li XH, Li Y, Li SL, Di YT, He HP, Hao XJ, Hua HM.
    Fitoterapia; 2013 Oct 01; 90():119-25. PubMed ID: 23856090
    [Abstract] [Full Text] [Related]

  • 10. Sesquiterpenoids from Inula racemosa Hook. f. inhibit nitric oxide production.
    Zhang SD, Qin JJ, Jin HZ, Yin YH, Li HL, Yang XW, Li X, Shan L, Zhang WD.
    Planta Med; 2012 Jan 01; 78(2):166-71. PubMed ID: 22002850
    [Abstract] [Full Text] [Related]

  • 11. Chemical constituents of Alnus firma and their inhibitory activity on lipopolysaccharide-induced nitric oxide production in BV2 microglia.
    Lee MA, Lee HK, Kim SH, Kim YC, Sung SH.
    Planta Med; 2010 Jul 01; 76(10):1007-10. PubMed ID: 20195963
    [Abstract] [Full Text] [Related]

  • 12. Inhibitory constituents of Euonymus alatus leaves and twigs on nitric oxide production in BV2 microglia cells.
    Jeong EJ, Yang H, Kim SH, Kang SY, Sung SH, Kim YC.
    Food Chem Toxicol; 2011 Jun 01; 49(6):1394-8. PubMed ID: 21426922
    [Abstract] [Full Text] [Related]

  • 13. Bioactive sesquiterpenes from the essential oil of Thuja orientalis.
    Kim KH, Moon E, Kim SY, Choi SU, Son MW, Choi SZ, Lee KR.
    Planta Med; 2013 Nov 01; 79(17):1680-4. PubMed ID: 24135886
    [Abstract] [Full Text] [Related]

  • 14. Homoisoflavonoids from Ophiopogon japonicus Ker-Gawler.
    Hoang Anh NT, Van Sung T, Porzel A, Franke K, Wessjohann LA.
    Phytochemistry; 2003 Apr 01; 62(7):1153-8. PubMed ID: 12591271
    [Abstract] [Full Text] [Related]

  • 15. New ursane-type triterpenoid saponins from the stem bark of Schefflera heptaphylla.
    Wu C, Duan YH, Tang W, Li MM, Wu X, Wang GC, Ye WC, Zhou GX, Li YL.
    Fitoterapia; 2014 Jan 01; 92():127-32. PubMed ID: 24144797
    [Abstract] [Full Text] [Related]

  • 16. Neolignans from the fruits of Magnolia obovata and their inhibition effect on NO production in LPS-induced RAW 264.7 cells.
    Seo KH, Lee DY, Lee DS, Park JH, Jeong RH, Jung YJ, Shrestha S, Chung IS, Kim GS, Kim YC, Baek NI.
    Planta Med; 2013 Sep 01; 79(14):1335-40. PubMed ID: 23970426
    [Abstract] [Full Text] [Related]

  • 17. Inhibitory effects of kaurenoic acid from Aralia continentalis on LPS-induced inflammatory response in RAW264.7 macrophages.
    Choi RJ, Shin EM, Jung HA, Choi JS, Kim YS.
    Phytomedicine; 2011 Jun 15; 18(8-9):677-82. PubMed ID: 21211951
    [Abstract] [Full Text] [Related]

  • 18. Evaluation of anti-inflammatory activity of compounds isolated from the rhizome of Ophiopogon japonicas.
    Zhao JW, Chen DS, Deng CS, Wang Q, Zhu W, Lin L.
    BMC Complement Altern Med; 2017 Jan 05; 17(1):7. PubMed ID: 28056939
    [Abstract] [Full Text] [Related]

  • 19. Sesquiterpenes from Vladimiria souliei and their inhibitory effects on NO production.
    Xu J, Jin D, Shi D, Ma Y, Yang B, Zhao P, Guo Y.
    Fitoterapia; 2011 Apr 05; 82(3):508-11. PubMed ID: 21238550
    [Abstract] [Full Text] [Related]

  • 20. Quinic acid derivatives from Pimpinella brachycarpa exert anti-neuroinflammatory activity in lipopolysaccharide-induced microglia.
    Lee SY, Moon E, Kim SY, Lee KR.
    Bioorg Med Chem Lett; 2013 Apr 01; 23(7):2140-4. PubMed ID: 23462643
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.