These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
261 related items for PubMed ID: 22658311
1. Identification and characterization of chitin synthase genes in the postharvest citrus fruit pathogen Penicillium digitatum. Gandía M, Harries E, Marcos JF. Fungal Biol; 2012 Jun; 116(6):654-64. PubMed ID: 22658311 [Abstract] [Full Text] [Related]
2. The myosin motor domain-containing chitin synthase PdChsVII is required for development, cell wall integrity and virulence in the citrus postharvest pathogen Penicillium digitatum. Gandía M, Harries E, Marcos JF. Fungal Genet Biol; 2014 Jun; 67():58-70. PubMed ID: 24727399 [Abstract] [Full Text] [Related]
3. The citrus postharvest pathogen Penicillium digitatum depends on the PdMpkB kinase for developmental and virulence functions. Ma H, Sun X, Wang M, Gai Y, Chung KR, Li H. Int J Food Microbiol; 2016 Nov 07; 236():167-76. PubMed ID: 27529663 [Abstract] [Full Text] [Related]
4. Functional characterization of the Dsc E3 ligase complex in the citrus postharvest pathogen Penicillium digitatum. Ruan R, Chung KR, Li H. Microbiol Res; 2017 Dec 07; 205():99-106. PubMed ID: 28942851 [Abstract] [Full Text] [Related]
5. The pH signaling transcription factor PacC is required for full virulence in Penicillium digitatum. Zhang T, Sun X, Xu Q, Candelas LG, Li H. Appl Microbiol Biotechnol; 2013 Oct 07; 97(20):9087-98. PubMed ID: 23917633 [Abstract] [Full Text] [Related]
6. Occurrence and function of fungal antifungal proteins: a case study of the citrus postharvest pathogen Penicillium digitatum. Garrigues S, Gandía M, Marcos JF. Appl Microbiol Biotechnol; 2016 Mar 07; 100(5):2243-56. PubMed ID: 26545756 [Abstract] [Full Text] [Related]
7. PdSNF1, a sucrose non-fermenting protein kinase gene, is required for Penicillium digitatum conidiation and virulence. Zhang T, Sun X, Xu Q, Zhu C, Li Q, Li H. Appl Microbiol Biotechnol; 2013 Jun 07; 97(12):5433-45. PubMed ID: 23296496 [Abstract] [Full Text] [Related]
8. PdCYP51B, a new putative sterol 14α-demethylase gene of Penicillium digitatum involved in resistance to imazalil and other fungicides inhibiting ergosterol synthesis. Sun X, Wang J, Feng D, Ma Z, Li H. Appl Microbiol Biotechnol; 2011 Aug 07; 91(4):1107-19. PubMed ID: 21637936 [Abstract] [Full Text] [Related]
9. PdSlt2 Penicillium digitatum mitogen-activated-protein kinase controls sporulation and virulence during citrus fruit infection. de Ramón-Carbonell M, Sánchez-Torres P. Fungal Biol; 2017 Dec 07; 121(12):1063-1074. PubMed ID: 29122178 [Abstract] [Full Text] [Related]
10. Genome sequence of the necrotrophic fungus Penicillium digitatum, the main postharvest pathogen of citrus. Marcet-Houben M, Ballester AR, de la Fuente B, Harries E, Marcos JF, González-Candelas L, Gabaldón T. BMC Genomics; 2012 Nov 21; 13():646. PubMed ID: 23171342 [Abstract] [Full Text] [Related]
11. Essential oils from clove affect growth of Penicillium species obtained from lemons. Martínez JA, González R. Commun Agric Appl Biol Sci; 2013 Nov 21; 78(3):563-72. PubMed ID: 25151832 [Abstract] [Full Text] [Related]
12. Transcriptional profiling analysis of Penicillium digitatum, the causal agent of citrus green mold, unravels an inhibited ergosterol biosynthesis pathway in response to citral. OuYang Q, Tao N, Jing G. BMC Genomics; 2016 Aug 11; 17(1):599. PubMed ID: 27514516 [Abstract] [Full Text] [Related]
13. Yeasts from native Brazilian Cerrado plants: Occurrence, diversity and use in the biocontrol of citrus green mould. Sperandio EM, Martins do Vale HM, Moreira GAM. Fungal Biol; 2015 Nov 11; 119(11):984-993. PubMed ID: 26466874 [Abstract] [Full Text] [Related]
14. Postharvest decay control of citrus fruit by preharvest pyrimethanil spray. D'Aquino S, Angioni A, Suming D, Palma A, Schirra M. Commun Agric Appl Biol Sci; 2013 Nov 11; 78(2):93-9. PubMed ID: 25145229 [Abstract] [Full Text] [Related]
15. Genome, Transcriptome, and Functional Analyses of Penicillium expansum Provide New Insights Into Secondary Metabolism and Pathogenicity. Ballester AR, Marcet-Houben M, Levin E, Sela N, Selma-Lázaro C, Carmona L, Wisniewski M, Droby S, González-Candelas L, Gabaldón T. Mol Plant Microbe Interact; 2015 Mar 11; 28(3):232-48. PubMed ID: 25338147 [Abstract] [Full Text] [Related]
16. A transcriptomic approach highlights induction of secondary metabolism in citrus fruit in response to Penicillium digitatum infection. González-Candelas L, Alamar S, Sánchez-Torres P, Zacarías L, Marcos JF. BMC Plant Biol; 2010 Aug 31; 10():194. PubMed ID: 20807411 [Abstract] [Full Text] [Related]
17. A highly efficient Agrobacterium tumefaciens-mediated transformation system for the postharvest pathogen Penicillium digitatum using DsRed and GFP to visualize citrus host colonization. Vu TX, Ngo TT, Mai LTD, Bui TT, Le DH, Bui HTV, Nguyen HQ, Ngo BX, Tran VT. J Microbiol Methods; 2018 Jan 31; 144():134-144. PubMed ID: 29175534 [Abstract] [Full Text] [Related]
18. The calcineurin-responsive transcription factor Crz1 is required for conidation, full virulence and DMI resistance in Penicillium digitatum. Zhang T, Xu Q, Sun X, Li H. Microbiol Res; 2013 May 06; 168(4):211-22. PubMed ID: 23238263 [Abstract] [Full Text] [Related]
19. Deletion of PdMit1, a homolog of yeast Csg1, affects growth and Ca(2+) sensitivity of the fungus Penicillium digitatum, but does not alter virulence. Zhu C, Wang W, Wang M, Ruan R, Sun X, He M, Mao C, Li H. Res Microbiol; 2015 Apr 06; 166(3):143-52. PubMed ID: 25725383 [Abstract] [Full Text] [Related]