These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
229 related items for PubMed ID: 22659037
1. A theoretical study on the role of Ca(2+)-activated K+ channels in the regulation of hormone-induced Ca2+ oscillations and their synchronization in adjacent cells. Catacuzzeno L, Fioretti B, Franciolini F. J Theor Biol; 2012 Sep 21; 309():103-12. PubMed ID: 22659037 [Abstract] [Full Text] [Related]
2. Mechanisms of cellular synchronization in the vascular wall. Mechanisms of vasomotion. Matchkov VV. Dan Med Bull; 2010 Oct 21; 57(10):B4191. PubMed ID: 21040688 [Abstract] [Full Text] [Related]
3. A model of intracellular Ca2+ oscillations based on the activity of the intermediate-conductance Ca2+-activated K+ channels. Fioretti B, Franciolini F, Catacuzzeno L. Biophys Chem; 2005 Jan 01; 113(1):17-23. PubMed ID: 15617807 [Abstract] [Full Text] [Related]
4. Lipid factor (bVLF) from bovine vitreous body evokes in EGFR-T17 cells a Ca2+-dependent K+ current associated with inositol 1,4,5-trisphosphate-independent Ca2+ mobilization. Camiña JP, Diaz-Rodriguez E, Harks EG, Theuvenet AP, Ypey DL, Casanueva FF. J Cell Physiol; 2003 Apr 01; 195(1):108-18. PubMed ID: 12599214 [Abstract] [Full Text] [Related]
5. NOS inhibition synchronizes calcium oscillations in human adipose tissue-derived mesenchymal stem cells by increasing gap-junctional coupling. Sauer H, Sharifpanah F, Hatry M, Steffen P, Bartsch C, Heller R, Padmasekar M, Howaldt HP, Bein G, Wartenberg M. J Cell Physiol; 2011 Jun 01; 226(6):1642-50. PubMed ID: 21413022 [Abstract] [Full Text] [Related]
6. Effects of gap junction to Ca(2+) and to IP(3) on the synchronization of intercellular calcium oscillations in hepatocytes. Wu D, Jia Y, Zhan X, Yang L, Liu Q. Biophys Chem; 2005 Feb 01; 113(2):145-54. PubMed ID: 15617821 [Abstract] [Full Text] [Related]
7. Inositol trisphosphate-dependent periodic activation of a Ca(2+)-activated K+ conductance in glucose-stimulated pancreatic beta-cells. Ammälä C, Larsson O, Berggren PO, Bokvist K, Juntti-Berggren L, Kindmark H, Rorsman P. Nature; 1991 Oct 31; 353(6347):849-52. PubMed ID: 1719424 [Abstract] [Full Text] [Related]
8. Mathematical model of outer hair cell regulation including ion transport and cell motility. O'Beirne GA, Patuzzi RB. Hear Res; 2007 Dec 31; 234(1-2):29-51. PubMed ID: 17981412 [Abstract] [Full Text] [Related]
9. Oscillations of pH inside the secretory granule control the gain of Ca2+ release for signal transduction in goblet cell exocytosis. Chin WC, Quesada I, Nguyen T, Verdugo P. Novartis Found Symp; 2002 Dec 31; 248():132-41; discussion 141-9, 277-82. PubMed ID: 12568492 [Abstract] [Full Text] [Related]
10. Synchronization of Ca2+ oscillations: a capacitative (AC) electrical coupling model in neuroepithelium. Yamashita M. FEBS J; 2010 Jan 31; 277(2):293-9. PubMed ID: 19895580 [Abstract] [Full Text] [Related]
11. Intracellular Ca(2+) oscillations induced by over-expressed Ca(V)3.1 T-type Ca(2+) channels in NG108-15 cells. Chevalier M, Mironneau C, Macrez N, Quignard JF. Cell Calcium; 2008 Dec 31; 44(6):592-603. PubMed ID: 18571720 [Abstract] [Full Text] [Related]
12. Direct evidence for calcium conductance of hyperpolarization-activated cyclic nucleotide-gated channels and human native If at physiological calcium concentrations. Michels G, Brandt MC, Zagidullin N, Khan IF, Larbig R, van Aaken S, Wippermann J, Hoppe UC. Cardiovasc Res; 2008 Jun 01; 78(3):466-75. PubMed ID: 18252758 [Abstract] [Full Text] [Related]
13. Modeling the impact of store-operated Ca2+ entry on intracellular Ca2+ oscillations. Kowalewski JM, Uhlén P, Kitano H, Brismar H. Math Biosci; 2006 Dec 01; 204(2):232-49. PubMed ID: 16620876 [Abstract] [Full Text] [Related]
14. Ca(2+)-activated K+ channels: molecular determinants and function of the SK family. Stocker M. Nat Rev Neurosci; 2004 Oct 01; 5(10):758-70. PubMed ID: 15378036 [Abstract] [Full Text] [Related]
15. Phase synchronization and coherence resonance of stochastic calcium oscillations in coupled hepatocytes. Wu D, Jia Y, Yang L, Liu Q, Zhan X. Biophys Chem; 2005 May 01; 115(1):37-47. PubMed ID: 15848282 [Abstract] [Full Text] [Related]
16. Small-conductance Ca2+-dependent K+ channels are the target of spike-induced Ca2+ release in a feedback regulation of pyramidal cell excitability. Yamada S, Takechi H, Kanchiku I, Kita T, Kato N. J Neurophysiol; 2004 May 01; 91(5):2322-9. PubMed ID: 14695351 [Abstract] [Full Text] [Related]
17. Signal-induced Ca2+ oscillations through the regulation of the inositol 1,4,5-trisphosphate-gated Ca2+ channel: an allosteric model. Laurent M, Claret M. J Theor Biol; 1997 Jun 07; 186(3):307-26. PubMed ID: 9219669 [Abstract] [Full Text] [Related]
18. Delayed-rectifier (KV2.1) regulation of pancreatic beta-cell calcium responses to glucose: inhibitor specificity and modeling. Tamarina NA, Kuznetsov A, Fridlyand LE, Philipson LH. Am J Physiol Endocrinol Metab; 2005 Oct 07; 289(4):E578-85. PubMed ID: 16014354 [Abstract] [Full Text] [Related]
19. Modeling of Ca2+ flux in pancreatic beta-cells: role of the plasma membrane and intracellular stores. Fridlyand LE, Tamarina N, Philipson LH. Am J Physiol Endocrinol Metab; 2003 Jul 07; 285(1):E138-54. PubMed ID: 12644446 [Abstract] [Full Text] [Related]
20. Role of voltage-dependent modulation of store Ca2+ release in synchronization of Ca2+ oscillations. Imtiaz MS, Katnik CP, Smith DW, van Helden DF. Biophys J; 2006 Jan 01; 90(1):1-23. PubMed ID: 16040741 [Abstract] [Full Text] [Related] Page: [Next] [New Search]