These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
167 related items for PubMed ID: 22663136
1. Estimates of increased black carbon emissions from electrostatic precipitators during powdered activated carbon injection for mercury emissions control. Clack HL. Environ Sci Technol; 2012 Jul 03; 46(13):7327-33. PubMed ID: 22663136 [Abstract] [Full Text] [Related]
2. Adsorbents for capturing mercury in coal-fired boiler flue gas. Yang H, Xu Z, Fan M, Bland AE, Judkins RR. J Hazard Mater; 2007 Jul 19; 146(1-2):1-11. PubMed ID: 17544578 [Abstract] [Full Text] [Related]
3. Mercury emissions from coal combustion: modeling and comparison of Hg capture in a fabric filter versus an electrostatic precipitator. Scala F, Clack HL. J Hazard Mater; 2008 Apr 01; 152(2):616-23. PubMed ID: 17703878 [Abstract] [Full Text] [Related]
4. Characteristics and the behavior in electrostatic precipitators of high-alumina coal fly ash from the Jungar power plant, Inner Mongolia, China. Qi L, Yuan Y. J Hazard Mater; 2011 Aug 15; 192(1):222-5. PubMed ID: 21621327 [Abstract] [Full Text] [Related]
5. Inhibition and promotion of trace pollutant adsorption within electrostatic precipitators. Clack HL. J Air Waste Manag Assoc; 2017 Aug 15; 67(8):881-888. PubMed ID: 28287914 [Abstract] [Full Text] [Related]
6. The secondary release of mercury in coal fly ash-based flue-gas mercury removal technology. He J, Duan C, Lei M, Zhu X. Environ Technol; 2016 Aug 15; 37(1):28-38. PubMed ID: 26121324 [Abstract] [Full Text] [Related]
7. Mercury capture within coal-fired power plant electrostatic precipitators: model evaluation. Clack HL. Environ Sci Technol; 2009 Mar 01; 43(5):1460-6. PubMed ID: 19350920 [Abstract] [Full Text] [Related]
8. Vapor-phase elemental mercury adsorption by residual carbon separated from fly ash. Wang LG, Chen CH, Kolker KH. J Environ Sci (China); 2005 Mar 01; 17(3):518-20. PubMed ID: 16083138 [Abstract] [Full Text] [Related]
9. Radiative forcing associated with particulate carbon emissions resulting from the use of mercury control technology. Lin G, Penner JE, Clack HL. Environ Sci Technol; 2014 Sep 02; 48(17):10519-23. PubMed ID: 25093939 [Abstract] [Full Text] [Related]
10. Speciation and mass-balance of mercury from pulverized coal fired power plants burning western Canadian subbituminous coals. Goodarzi F. J Environ Monit; 2004 Oct 02; 6(10):792-8. PubMed ID: 15480492 [Abstract] [Full Text] [Related]
11. Sorbents for CO2 capture from high carbon fly ashes. Maroto-Valer MM, Lu Z, Zhang Y, Tang Z. Waste Manag; 2008 Nov 02; 28(11):2320-8. PubMed ID: 18093818 [Abstract] [Full Text] [Related]
12. Statistical estimate of mercury removal efficiencies for air pollution control devices of municipal solid waste incinerators. Takahashi F, Kida A, Shimaoka T. Sci Total Environ; 2010 Oct 15; 408(22):5472-7. PubMed ID: 20713298 [Abstract] [Full Text] [Related]
13. Distribution and Fate of Mercury in Pulverized Bituminous Coal-Fired Power Plants in Coal Energy-Dominant Huainan City, China. Chen B, Liu G, Sun R. Arch Environ Contam Toxicol; 2016 May 15; 70(4):724-33. PubMed ID: 26883032 [Abstract] [Full Text] [Related]
14. Particle size distribution effects on gas-particle mass transfer within electrostatic precipitators. Clack HL. Environ Sci Technol; 2006 Jun 15; 40(12):3929-33. PubMed ID: 16830563 [Abstract] [Full Text] [Related]
15. The role of ammonia on mercury leaching from coal fly ash. Wang J, Wang T, Mallhi H, Liu Y, Ban H, Ladwig K. Chemosphere; 2007 Nov 15; 69(10):1586-92. PubMed ID: 17604819 [Abstract] [Full Text] [Related]
16. Effects of coal blending in electrostatic precipitation efficiency-Inner Mongolia, China. Qi L, Xu J, Yao Y, Zhang Y. Environ Sci Pollut Res Int; 2018 Nov 15; 25(31):31421-31426. PubMed ID: 30196465 [Abstract] [Full Text] [Related]
17. Biomass gasification chars for mercury capture from a simulated flue gas of coal combustion. Fuente-Cuesta A, Diaz-Somoano M, Lopez-Anton MA, Cieplik M, Fierro JL, Martínez-Tarazona MR. J Environ Manage; 2012 May 15; 98():23-8. PubMed ID: 22325640 [Abstract] [Full Text] [Related]
18. In-Situ Capture of Mercury in Coal-Fired Power Plants Using High Surface Energy Fly Ash. Zhang Y, Mei D, Wang T, Wang J, Gu Y, Zhang Z, Romero CE, Pan WP. Environ Sci Technol; 2019 Jul 02; 53(13):7913-7920. PubMed ID: 31188572 [Abstract] [Full Text] [Related]
19. The performance of iodine on the removal of elemental mercury from the simulated coal-fired flue gas. Chi Y, Yan N, Qu Z, Qiao S, Jia J. J Hazard Mater; 2009 Jul 30; 166(2-3):776-81. PubMed ID: 19153004 [Abstract] [Full Text] [Related]