These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
194 related items for PubMed ID: 22669632
1. Study and reengineering of the binding sites and allosteric regulation of biosynthetic threonine deaminase by isoleucine and valine in Escherichia coli. Chen L, Chen Z, Zheng P, Sun J, Zeng AP. Appl Microbiol Biotechnol; 2013 Apr; 97(7):2939-49. PubMed ID: 22669632 [Abstract] [Full Text] [Related]
2. Allosteric regulation of Bacillus subtilis threonine deaminase, a biosynthetic threonine deaminase with a single regulatory domain. Shulman A, Zalyapin E, Vyazmensky M, Yifrach O, Barak Z, Chipman DM. Biochemistry; 2008 Nov 11; 47(45):11783-92. PubMed ID: 18855421 [Abstract] [Full Text] [Related]
3. Allosteric regulation of biosynthetic threonine deaminase from Escherichia coli: effects of isoleucine and valine on active-site ligand binding and catalysis. Eisenstein E. Arch Biochem Biophys; 1995 Jan 10; 316(1):311-8. PubMed ID: 7840631 [Abstract] [Full Text] [Related]
4. An expanded two-state model accounts for homotropic cooperativity in biosynthetic threonine deaminase from Escherichia coli. Eisenstein E, Yu HD, Fisher KE, Iacuzio DA, Ducote KR, Schwarz FP. Biochemistry; 1995 Jul 25; 34(29):9403-12. PubMed ID: 7626610 [Abstract] [Full Text] [Related]
5. A site-directed mutagenesis interrogation of the carboxy-terminal end of Arabidopsis thaliana threonine dehydratase/deaminase reveals a synergistic interaction between two effector-binding sites and contributes to the development of a novel selectable marker. Garcia EL, Mourad GS. Plant Mol Biol; 2004 May 25; 55(1):121-34. PubMed ID: 15604669 [Abstract] [Full Text] [Related]
6. An efficient approach to identify ilvA mutations reveals an amino-terminal catalytic domain in biosynthetic threonine deaminase from Escherichia coli. Fisher KE, Eisenstein E. J Bacteriol; 1993 Oct 25; 175(20):6605-13. PubMed ID: 8407838 [Abstract] [Full Text] [Related]
7. Amino acid substitutions in the C-terminal regulatory domain disrupt allosteric effector binding to biosynthetic threonine deaminase from Escherichia coli. Chinchilla D, Schwarz FP, Eisenstein E. J Biol Chem; 1998 Sep 04; 273(36):23219-24. PubMed ID: 9722552 [Abstract] [Full Text] [Related]
8. Evidence for two distinct effector-binding sites in threonine deaminase by site-directed mutagenesis, kinetic, and binding experiments. Wessel PM, Graciet E, Douce R, Dumas R. Biochemistry; 2000 Dec 12; 39(49):15136-43. PubMed ID: 11106492 [Abstract] [Full Text] [Related]
9. Cooperative binding of the feedback modifiers isoleucine and valine to biosynthetic threonine deaminase from Escherichia coli. Eisenstein E, Yu HD, Schwarz FP. J Biol Chem; 1994 Nov 25; 269(47):29423-9. PubMed ID: 7961922 [Abstract] [Full Text] [Related]
10. High-Level Production of Isoleucine and Fusel Alcohol by Expression of the Feedback Inhibition-Insensitive Threonine Deaminase in Saccharomyces cerevisiae. Isogai S, Nishimura A, Kotaka A, Murakami N, Hotta N, Ishida H, Takagi H. Appl Environ Microbiol; 2022 Mar 08; 88(5):e0213021. PubMed ID: 35020456 [Abstract] [Full Text] [Related]
11. Evaluation of the Escherichia coli threonine deaminase gene as a selectable marker for plant transformation. Ebmeier A, Allison L, Cerutti H, Clemente T. Planta; 2004 Mar 08; 218(5):751-8. PubMed ID: 14673650 [Abstract] [Full Text] [Related]
12. Threonine dehydratases of Corynebacterium glutamicum with altered allosteric control: their generation and biochemical and structural analysis. Möckel B, Eggeling L, Sahm H. Mol Microbiol; 1994 Sep 08; 13(5):833-42. PubMed ID: 7815942 [Abstract] [Full Text] [Related]
13. Key NAD+-binding residues in human 15-hydroxyprostaglandin dehydrogenase. Cho H, Hamza A, Zhan CG, Tai HH. Arch Biochem Biophys; 2005 Jan 15; 433(2):447-53. PubMed ID: 15581601 [Abstract] [Full Text] [Related]
14. Threonine deaminase from a nonsense mutant of Escherichia coli requiring isoleucine or pyridoxine: evidence for half-of-the-sites reactivity. Feldner J, Grimminger H. J Bacteriol; 1976 Apr 15; 126(1):100-7. PubMed ID: 770416 [Abstract] [Full Text] [Related]
15. Synthesis of the isoleucyl- and valyl-tRNA synthetases and the isoleucine-valine biosynthetic enzymes in a threonine deaminase regulatory mutant of Escherichia coli K-12. Singer PA, Levinthal M, Williams LS. J Mol Biol; 1984 May 05; 175(1):39-55. PubMed ID: 6374157 [Abstract] [Full Text] [Related]
16. Expression of the Escherichia coli catabolic threonine dehydratase in Corynebacterium glutamicum and its effect on isoleucine production. Guillouet S, Rodal AA, An G, Lessard PA, Sinskey AJ. Appl Environ Microbiol; 1999 Jul 05; 65(7):3100-7. PubMed ID: 10388709 [Abstract] [Full Text] [Related]
17. Rational design of Escherichia coli for L-isoleucine production. Park JH, Oh JE, Lee KH, Kim JY, Lee SY. ACS Synth Biol; 2012 Nov 16; 1(11):532-40. PubMed ID: 23656230 [Abstract] [Full Text] [Related]
18. Cloning, expression, purification, and characterization of biosynthetic threonine deaminase from Escherichia coli. Eisenstein E. J Biol Chem; 1991 Mar 25; 266(9):5801-7. PubMed ID: 2005118 [Abstract] [Full Text] [Related]
19. Structure and control of pyridoxal phosphate dependent allosteric threonine deaminase. Gallagher DT, Gilliland GL, Xiao G, Zondlo J, Fisher KE, Chinchilla D, Eisenstein E. Structure; 1998 Apr 15; 6(4):465-75. PubMed ID: 9562556 [Abstract] [Full Text] [Related]
20. Energetics of cooperative ligand binding to the active sites of biosynthetic threonine deaminase from Escherichia coli. Eisenstein E. J Biol Chem; 1994 Nov 25; 269(47):29416-22. PubMed ID: 7961921 [Abstract] [Full Text] [Related] Page: [Next] [New Search]