These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


297 related items for PubMed ID: 22677569

  • 1. Determining the influence of muscle operating length on muscle performance during frog swimming using a bio-robotic model.
    Clemente CJ, Richards C.
    Bioinspir Biomim; 2012 Sep; 7(3):036018. PubMed ID: 22677569
    [Abstract] [Full Text] [Related]

  • 2. A bio-robotic platform for integrating internal and external mechanics during muscle-powered swimming.
    Richards CT, Clemente CJ.
    Bioinspir Biomim; 2012 Mar; 7(1):016010. PubMed ID: 22345392
    [Abstract] [Full Text] [Related]

  • 3. Mechanical properties of a bio-inspired robotic knifefish with an undulatory propulsor.
    Curet OM, Patankar NA, Lauder GV, MacIver MA.
    Bioinspir Biomim; 2011 Jun; 6(2):026004. PubMed ID: 21474864
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Frequency-dependent power output and skeletal muscle design.
    Medler S, Hulme K.
    Comp Biochem Physiol A Mol Integr Physiol; 2009 Mar; 152(3):407-17. PubMed ID: 19101645
    [Abstract] [Full Text] [Related]

  • 8. Nature as an engineer: one simple concept of a bio-inspired functional artificial muscle.
    Schmitt S, Haeufle DF, Blickhan R, Günther M.
    Bioinspir Biomim; 2012 Sep; 7(3):036022. PubMed ID: 22728876
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Bio-inspired aquatic robotics by untethered piezohydroelastic actuation.
    Cen L, Erturk A.
    Bioinspir Biomim; 2013 Mar; 8(1):016006. PubMed ID: 23348365
    [Abstract] [Full Text] [Related]

  • 14. Force, work and power output of lower limb muscles during human maximal-effort countermovement jumping.
    Nagano A, Komura T, Fukashiro S, Himeno R.
    J Electromyogr Kinesiol; 2005 Aug; 15(4):367-76. PubMed ID: 15811607
    [Abstract] [Full Text] [Related]

  • 15. Effect of caudal fin flexibility on the propulsive efficiency of a fish-like swimmer.
    Bergmann M, Iollo A, Mittal R.
    Bioinspir Biomim; 2014 Sep 25; 9(4):046001. PubMed ID: 25252883
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Zebrafish response to robotic fish: preference experiments on isolated individuals and small shoals.
    Polverino G, Abaid N, Kopman V, Macrì S, Porfiri M.
    Bioinspir Biomim; 2012 Sep 25; 7(3):036019. PubMed ID: 22677608
    [Abstract] [Full Text] [Related]

  • 18. Modulation of in vivo muscle power output during swimming in the African clawed frog (Xenopus laevis).
    Richards CT, Biewener AA.
    J Exp Biol; 2007 Sep 25; 210(Pt 18):3147-59. PubMed ID: 17766291
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. A locust-inspired miniature jumping robot.
    Zaitsev V, Gvirsman O, Ben Hanan U, Weiss A, Ayali A, Kosa G.
    Bioinspir Biomim; 2015 Nov 25; 10(6):066012. PubMed ID: 26602094
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.