These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


358 related items for PubMed ID: 22680559

  • 1. Tunable oscillations and chaotic dynamics in systems with localized synthesis.
    Naqib F, Quail T, Musa L, Vulpe H, Nadeau J, Lei J, Glass L.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 2):046210. PubMed ID: 22680559
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Synchronization of weakly perturbed Markov chain oscillators.
    Tönjes R, Kori H.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 2):056206. PubMed ID: 22181483
    [Abstract] [Full Text] [Related]

  • 5. Introduction to focus issue: design and control of self-organization in distributed active systems.
    Mikhailov AS, Showalter K.
    Chaos; 2008 Jun; 18(2):026101. PubMed ID: 18601503
    [Abstract] [Full Text] [Related]

  • 6. Projective-anticipating, projective, and projective-lag synchronization of time-delayed chaotic systems on random networks.
    Feng CF, Xu XJ, Wang SJ, Wang YH.
    Chaos; 2008 Jun; 18(2):023117. PubMed ID: 18601484
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Detecting anomalous phase synchronization from time series.
    Tokuda IT, Kumar Dana S, Kurths J.
    Chaos; 2008 Jun; 18(2):023134. PubMed ID: 18601500
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Transition from phase to generalized synchronization in time-delay systems.
    Senthilkumar DV, Lakshmanan M, Kurths J.
    Chaos; 2008 Jun; 18(2):023118. PubMed ID: 18601485
    [Abstract] [Full Text] [Related]

  • 12. Synchronization in networks of spatially extended systems.
    Filatova AE, Hramov AE, Koronovskii AA, Boccaletti S.
    Chaos; 2008 Jun; 18(2):023133. PubMed ID: 18601499
    [Abstract] [Full Text] [Related]

  • 13. Amplitude death in complex networks induced by environment.
    Resmi V, Ambika G, Amritkar RE, Rangarajan G.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 2):046211. PubMed ID: 22680560
    [Abstract] [Full Text] [Related]

  • 14. Can the shape of attractor forbid chaotic phase synchronization?
    Zaks MA, Park EH.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 2):026215. PubMed ID: 16196692
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Invariant polygons in systems with grazing-sliding.
    Szalai R, Osinga HM.
    Chaos; 2008 Jun; 18(2):023121. PubMed ID: 18601488
    [Abstract] [Full Text] [Related]

  • 18. Introduction to anti-control of discrete chaos: theory and applications.
    Chen G, Shi Y.
    Philos Trans A Math Phys Eng Sci; 2006 Sep 15; 364(1846):2433-47. PubMed ID: 16893796
    [Abstract] [Full Text] [Related]

  • 19. A lot of strange attractors: chaotic or not?
    Badard R.
    Chaos; 2008 Jun 15; 18(2):023127. PubMed ID: 18601494
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 18.