These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


562 related items for PubMed ID: 22681399

  • 1. Distinct effects of humic acid on transport and retention of TiO2 rutile nanoparticles in saturated sand columns.
    Chen G, Liu X, Su C.
    Environ Sci Technol; 2012 Jul 03; 46(13):7142-50. PubMed ID: 22681399
    [Abstract] [Full Text] [Related]

  • 2. Synergistic effects of phosphorus and humic acid on the transport of anatase titanium dioxide nanoparticles in water-saturated porous media.
    Chen M, Xu N, Christodoulatos C, Wang D.
    Environ Pollut; 2018 Dec 03; 243(Pt B):1368-1375. PubMed ID: 30273863
    [Abstract] [Full Text] [Related]

  • 3. Humic acid facilitates the transport of ARS-labeled hydroxyapatite nanoparticles in iron oxyhydroxide-coated sand.
    Wang D, Bradford SA, Harvey RW, Gao B, Cang L, Zhou D.
    Environ Sci Technol; 2012 Mar 06; 46(5):2738-45. PubMed ID: 22316080
    [Abstract] [Full Text] [Related]

  • 4. The effect of humic acid on the aggregation of titanium dioxide nanoparticles under different pH and ionic strengths.
    Zhu M, Wang H, Keller AA, Wang T, Li F.
    Sci Total Environ; 2014 Jul 15; 487():375-80. PubMed ID: 24793841
    [Abstract] [Full Text] [Related]

  • 5. Effect of humic acid source on humic acid adsorption onto titanium dioxide nanoparticles.
    Erhayem M, Sohn M.
    Sci Total Environ; 2014 Feb 01; 470-471():92-8. PubMed ID: 24140685
    [Abstract] [Full Text] [Related]

  • 6. Transport of fullerene nanoparticles (nC60) in saturated sand and sandy soil: controlling factors and modeling.
    Zhang L, Hou L, Wang L, Kan AT, Chen W, Tomson MB.
    Environ Sci Technol; 2012 Jul 03; 46(13):7230-8. PubMed ID: 22681192
    [Abstract] [Full Text] [Related]

  • 7. Influence of natural organic matter on the aggregation and deposition of titanium dioxide nanoparticles.
    Thio BJ, Zhou D, Keller AA.
    J Hazard Mater; 2011 May 15; 189(1-2):556-63. PubMed ID: 21429667
    [Abstract] [Full Text] [Related]

  • 8. Stability studies for titanium dioxide nanoparticles upon adsorption of Suwannee River humic and fulvic acids and natural organic matter.
    Erhayem M, Sohn M.
    Sci Total Environ; 2014 Jan 15; 468-469():249-57. PubMed ID: 24035980
    [Abstract] [Full Text] [Related]

  • 9. Combined factors influencing the aggregation and deposition of nano-TiO2 in the presence of humic acid and bacteria.
    Chowdhury I, Cwiertny DM, Walker SL.
    Environ Sci Technol; 2012 Jul 03; 46(13):6968-76. PubMed ID: 22455349
    [Abstract] [Full Text] [Related]

  • 10. Impact of sunlight and humic acid on the deposition kinetics of aqueous fullerene nanoparticles (nC60).
    Qu X, Alvarez PJ, Li Q.
    Environ Sci Technol; 2012 Dec 18; 46(24):13455-62. PubMed ID: 23157776
    [Abstract] [Full Text] [Related]

  • 11. Influence of phosphate and solution pH on the mobility of ZnO nanoparticles in saturated sand.
    Li L, Schuster M.
    Sci Total Environ; 2014 Feb 15; 472():971-8. PubMed ID: 24355393
    [Abstract] [Full Text] [Related]

  • 12. Interactions of humic acid with nanosized inorganic oxides.
    Yang K, Lin D, Xing B.
    Langmuir; 2009 Apr 09; 25(6):3571-6. PubMed ID: 19708146
    [Abstract] [Full Text] [Related]

  • 13. Transport and aggregation of rutile titanium dioxide nanoparticles in saturated porous media in the presence of ammonium.
    Xu X, Xu N, Cheng X, Guo P, Chen Z, Wang D.
    Chemosphere; 2017 Feb 09; 169():9-17. PubMed ID: 27855333
    [Abstract] [Full Text] [Related]

  • 14. Antagonistic effects of humic acid and iron oxyhydroxide grain-coating on biochar nanoparticle transport in saturated sand.
    Wang D, Zhang W, Zhou D.
    Environ Sci Technol; 2013 May 21; 47(10):5154-61. PubMed ID: 23614641
    [Abstract] [Full Text] [Related]

  • 15. Transport of ARS-labeled hydroxyapatite nanoparticles in saturated granular media is influenced by surface charge variability even in the presence of humic acid.
    Wang D, Bradford SA, Harvey RW, Hao X, Zhou D.
    J Hazard Mater; 2012 Aug 30; 229-230():170-6. PubMed ID: 22721835
    [Abstract] [Full Text] [Related]

  • 16. Effects of Cd(II) on the stability of humic acid-coated nano-TiO2 particles in aquatic environments.
    Wang L, Lu Y, Yang C, Chen C, Huang W, Dang Z.
    Environ Sci Pollut Res Int; 2017 Oct 30; 24(29):23144-23152. PubMed ID: 28828557
    [Abstract] [Full Text] [Related]

  • 17. Influence of mineral colloids and humic substances on uranium(VI) transport in water-saturated geologic porous media.
    Wang Q, Cheng T, Wu Y.
    J Contam Hydrol; 2014 Dec 01; 170():76-85. PubMed ID: 25444118
    [Abstract] [Full Text] [Related]

  • 18. Effect of reduced humic acid on the transport of ferrihydrite nanoparticles under anoxic conditions.
    Liao P, Li W, Wang D, Jiang Y, Pan C, Fortner JD, Yuan S.
    Water Res; 2017 Feb 01; 109():347-357. PubMed ID: 27926882
    [Abstract] [Full Text] [Related]

  • 19. Nano-SiO2 transport and retention in saturated porous medium: Influence of pH, ionic strength, and natural organics.
    Ghosh D, Das S, Gahlot VK, Pulimi M, Anand S, Chandrasekaran N, Rai PK, Mukherjee A.
    J Contam Hydrol; 2022 Jun 01; 248():104029. PubMed ID: 35653834
    [Abstract] [Full Text] [Related]

  • 20. Role of pH and ionic strength in the aggregation of TiO2 nanoparticles in the presence of extracellular polymeric substances from Bacillus subtilis.
    Lin D, Story SD, Walker SL, Huang Q, Liang W, Cai P.
    Environ Pollut; 2017 Sep 01; 228():35-42. PubMed ID: 28511037
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 29.