These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
1195 related items for PubMed ID: 22689304
21. Comparative study of osteogenic potential of a composite scaffold incorporating either endogenous bone morphogenetic protein-2 or exogenous phytomolecule icaritin: an in vitro efficacy study. Chen SH, Wang XL, Xie XH, Zheng LZ, Yao D, Wang DP, Leng Y, Zhang G, Qin L. Acta Biomater; 2012 Aug; 8(8):3128-37. PubMed ID: 22543006 [Abstract] [Full Text] [Related]
22. Preparation of dexamethasone-loaded biphasic calcium phosphate nanoparticles/collagen porous composite scaffolds for bone tissue engineering. Chen Y, Kawazoe N, Chen G. Acta Biomater; 2018 Feb; 67():341-353. PubMed ID: 29242161 [Abstract] [Full Text] [Related]
23. Cell proliferation, viability, and in vitro differentiation of equine mesenchymal stem cells seeded on bacterial cellulose hydrogel scaffolds. Favi PM, Benson RS, Neilsen NR, Hammonds RL, Bates CC, Stephens CP, Dhar MS. Mater Sci Eng C Mater Biol Appl; 2013 May 01; 33(4):1935-44. PubMed ID: 23498215 [Abstract] [Full Text] [Related]
24. Boron containing poly-(lactide-co-glycolide) (PLGA) scaffolds for bone tissue engineering. Doğan A, Demirci S, Bayir Y, Halici Z, Karakus E, Aydin A, Cadirci E, Albayrak A, Demirci E, Karaman A, Ayan AK, Gundogdu C, Sahin F. Mater Sci Eng C Mater Biol Appl; 2014 Nov 01; 44():246-53. PubMed ID: 25280703 [Abstract] [Full Text] [Related]
25. Osteogenic differentiation and ectopic bone formation of canine bone marrow-derived mesenchymal stem cells in injectable thermo-responsive polymer hydrogel. Liao HT, Chen CT, Chen JP. Tissue Eng Part C Methods; 2011 Nov 01; 17(11):1139-49. PubMed ID: 21870942 [Abstract] [Full Text] [Related]
26. Surface modification of 3D-printed porous scaffolds via mussel-inspired polydopamine and effective immobilization of rhBMP-2 to promote osteogenic differentiation for bone tissue engineering. Lee SJ, Lee D, Yoon TR, Kim HK, Jo HH, Park JS, Lee JH, Kim WD, Kwon IK, Park SA. Acta Biomater; 2016 Aug 01; 40():182-191. PubMed ID: 26868173 [Abstract] [Full Text] [Related]
27. Quantitative assessment of scaffold and growth factor-mediated repair of critically sized bone defects. Oest ME, Dupont KM, Kong HJ, Mooney DJ, Guldberg RE. J Orthop Res; 2007 Jul 01; 25(7):941-50. PubMed ID: 17415756 [Abstract] [Full Text] [Related]
28. Enhancement of ectopic bone formation by bone morphogenetic protein-2 released from a heparin-conjugated poly(L-lactic-co-glycolic acid) scaffold. Jeon O, Song SJ, Kang SW, Putnam AJ, Kim BS. Biomaterials; 2007 Jun 01; 28(17):2763-71. PubMed ID: 17350678 [Abstract] [Full Text] [Related]
33. Enhanced osteoinductivity and osteoconductivity through hydroxyapatite coating of silk-based tissue-engineered ligament scaffold. He P, Sahoo S, Ng KS, Chen K, Toh SL, Goh JC. J Biomed Mater Res A; 2013 Feb 01; 101(2):555-66. PubMed ID: 22949167 [Abstract] [Full Text] [Related]
34. Synergistic interaction of platelet derived growth factor (PDGF) with the surface of PLLA/Col/HA and PLLA/HA scaffolds produces rapid osteogenic differentiation. Raghavendran HR, Mohan S, Genasan K, Murali MR, Naveen SV, Talebian S, McKean R, Kamarul T. Colloids Surf B Biointerfaces; 2016 Mar 01; 139():68-78. PubMed ID: 26700235 [Abstract] [Full Text] [Related]
35. Controlled dual delivery of BMP-2 and dexamethasone by nanoparticle-embedded electrospun nanofibers for the efficient repair of critical-sized rat calvarial defect. Li L, Zhou G, Wang Y, Yang G, Ding S, Zhou S. Biomaterials; 2015 Jan 01; 37():218-29. PubMed ID: 25453952 [Abstract] [Full Text] [Related]
36. Differentiation of bone marrow stromal cells into osteoblasts in a self-assembling peptide hydrogel: in vitro and in vivo studies. Ozeki M, Kuroda S, Kon K, Kasugai S. J Biomater Appl; 2011 Mar 01; 25(7):663-84. PubMed ID: 20089608 [Abstract] [Full Text] [Related]
37. Single walled carbon nanotube composites for bone tissue engineering. Gupta A, Woods MD, Illingworth KD, Niemeier R, Schafer I, Cady C, Filip P, El-Amin SF. J Orthop Res; 2013 Sep 01; 31(9):1374-81. PubMed ID: 23629922 [Abstract] [Full Text] [Related]
39. [Synthetic RGD-containing peptide K16GRGDSPC affected the adhesion, proliferation and osteogenic differentiation of rabbit bone marrow stromal cells on PLGA-[ASP-PEG] scaffold materials]. Pan HT, Zheng QX, Guo XD. Zhonghua Yi Xue Za Zhi; 2006 Oct 24; 86(39):2766-70. PubMed ID: 17199996 [Abstract] [Full Text] [Related]
40. In vitro evaluation of elastin-like polypeptide-collagen composite scaffold for bone tissue engineering. Amruthwar SS, Janorkar AV. Dent Mater; 2013 Feb 24; 29(2):211-20. PubMed ID: 23127995 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]