These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


87 related items for PubMed ID: 22696546

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Minimum acceleration criterion with constraints implies bang-bang control as an underlying principle for optimal trajectories of arm reaching movements.
    Ben-Itzhak S, Karniel A.
    Neural Comput; 2008 Mar; 20(3):779-812. PubMed ID: 18045017
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Coordinated turn-and-reach movements. I. Anticipatory compensation for self-generated coriolis and interaction torques.
    Pigeon P, Bortolami SB, DiZio P, Lackner JR.
    J Neurophysiol; 2003 Jan; 89(1):276-89. PubMed ID: 12522179
    [Abstract] [Full Text] [Related]

  • 5. Reaching to grasp with a multi-jointed arm. I. Computational model.
    Torres EB, Zipser D.
    J Neurophysiol; 2002 Nov; 88(5):2355-67. PubMed ID: 12424277
    [Abstract] [Full Text] [Related]

  • 6. Evaluation of trajectory planning models for arm-reaching movements based on energy cost.
    Nishii J, Taniai Y.
    Neural Comput; 2009 Sep; 21(9):2634-47. PubMed ID: 19548798
    [Abstract] [Full Text] [Related]

  • 7. Different predictions by the minimum variance and minimum torque-change models on the skewness of movement velocity profiles.
    Tanaka H, Tai M, Qian N.
    Neural Comput; 2004 Oct; 16(10):2021-40. PubMed ID: 15333205
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Balance control during an arm raising movement in bipedal stance: which biomechanical factor is controlled?
    Ferry M, Martin L, Termoz N, Côté J, Prince F.
    Biol Cybern; 2004 Aug; 91(2):104-14. PubMed ID: 15338215
    [Abstract] [Full Text] [Related]

  • 11. Motor planning of arm movements is direction-dependent in the gravity field.
    Gentili R, Cahouet V, Papaxanthis C.
    Neuroscience; 2007 Mar 02; 145(1):20-32. PubMed ID: 17224242
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Changes in object-oriented arm movements that precede the transition to goal-directed reaching in infancy.
    Lee MH, Ranganathan R, Newell KM.
    Dev Psychobiol; 2011 Nov 02; 53(7):685-93. PubMed ID: 21432846
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Interference effect of observed human movement on action is due to velocity profile of biological motion.
    Kilner J, Hamilton AF, Blakemore SJ.
    Soc Neurosci; 2007 Nov 02; 2(3-4):158-66. PubMed ID: 18633814
    [Abstract] [Full Text] [Related]

  • 17. Dynamic model of the octopus arm. II. Control of reaching movements.
    Yekutieli Y, Sagiv-Zohar R, Hochner B, Flash T.
    J Neurophysiol; 2005 Aug 02; 94(2):1459-68. PubMed ID: 15829593
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Minimum Muscle-Tension Change Trajectories Predicted by Using a 17-Muscle Model of the Monkey's Arm.
    Dornay M, Kawato ATR Human Information Processing Research Laboratories Kyoto Japan R Suzuki MK, Suzuki R.
    J Mot Behav; 1996 Jun 02; 28(2):83-100. PubMed ID: 12529211
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 5.