These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
296 related items for PubMed ID: 22697552
1. Density dependence of the entropy and the solvation shell structure in supercritical water via molecular dynamics simulation. Ma H. J Chem Phys; 2012 Jun 07; 136(21):214501. PubMed ID: 22697552 [Abstract] [Full Text] [Related]
2. Density dependence of hydrogen bonding and the translational-orientational structural order in supercritical water: a molecular dynamics study. Ma H, Ma J. J Chem Phys; 2011 Aug 07; 135(5):054504. PubMed ID: 21823709 [Abstract] [Full Text] [Related]
3. Structural properties of hydration shell around various conformations of simple polypeptides. Czapiewski D, Zielkiewicz J. J Phys Chem B; 2010 Apr 08; 114(13):4536-50. PubMed ID: 20232827 [Abstract] [Full Text] [Related]
4. Two-particle entropy and structural ordering in liquid water. Zielkiewicz J. J Phys Chem B; 2008 Jul 03; 112(26):7810-5. PubMed ID: 18533700 [Abstract] [Full Text] [Related]
5. Comparison of select polarizable and non-polarizable water models in predicting solvation dynamics of water confined between MgO slabs. Kamath G, Deshmukh SA, Sankaranarayanan SK. J Phys Condens Matter; 2013 Jul 31; 25(30):305003. PubMed ID: 23819970 [Abstract] [Full Text] [Related]
6. Solvation shell dynamics studied by molecular dynamics simulation in relation to the translational and rotational dynamics of supercritical water and benzene. Yoshida K, Matubayasi N, Nakahara M. J Chem Phys; 2007 Nov 07; 127(17):174509. PubMed ID: 17994829 [Abstract] [Full Text] [Related]
7. A first principles molecular dynamics study of lithium atom solvation in binary liquid mixture of water and ammonia: structural, electronic, and dynamical properties. Pratihar S, Chandra A. J Chem Phys; 2011 Jan 14; 134(2):024519. PubMed ID: 21241132 [Abstract] [Full Text] [Related]
8. Structure and dynamics of the hydration shells of the Zn(2+) ion from ab initio molecular dynamics and combined ab initio and classical molecular dynamics simulations. Cauët E, Bogatko S, Weare JH, Fulton JL, Schenter GK, Bylaska EJ. J Chem Phys; 2010 May 21; 132(19):194502. PubMed ID: 20499974 [Abstract] [Full Text] [Related]
9. Ultrafast dynamics of hydrogen bond exchange in aqueous ionic solutions. Park S, Odelius M, Gaffney KJ. J Phys Chem B; 2009 Jun 04; 113(22):7825-35. PubMed ID: 19435307 [Abstract] [Full Text] [Related]
10. Structural properties of water: comparison of the SPC, SPCE, TIP4P, and TIP5P models of water. Zielkiewicz J. J Chem Phys; 2005 Sep 08; 123(10):104501. PubMed ID: 16178604 [Abstract] [Full Text] [Related]
11. The hydrogen bond network structure within the hydration shell around simple osmolytes: urea, tetramethylurea, and trimethylamine-N-oxide, investigated using both a fixed charge and a polarizable water model. Kuffel A, Zielkiewicz J. J Chem Phys; 2010 Jul 21; 133(3):035102. PubMed ID: 20649360 [Abstract] [Full Text] [Related]
12. On the use of excess entropy scaling to describe the dynamic properties of water. Chopra R, Truskett TM, Errington JR. J Phys Chem B; 2010 Aug 19; 114(32):10558-66. PubMed ID: 20701386 [Abstract] [Full Text] [Related]
13. Thermodynamic, diffusional, and structural anomalies in rigid-body water models. Agarwal M, Alam MP, Chakravarty C. J Phys Chem B; 2011 Jun 02; 115(21):6935-45. PubMed ID: 21553909 [Abstract] [Full Text] [Related]
14. Solvation theory to provide a molecular interpretation of the hydrophobic entropy loss of noble-gas hydration. Irudayam SJ, Henchman RH. J Phys Condens Matter; 2010 Jul 21; 22(28):284108. PubMed ID: 21399280 [Abstract] [Full Text] [Related]
15. Correlation of structural order, anomalous density, and hydrogen bonding network of liquid water. Bandyopadhyay D, Mohan S, Ghosh SK, Choudhury N. J Phys Chem B; 2013 Jul 25; 117(29):8831-43. PubMed ID: 23859122 [Abstract] [Full Text] [Related]
16. Structure of the first- and second-neighbor shells of simulated water: quantitative relation to translational and orientational order. Yan Z, Buldyrev SV, Kumar P, Giovambattista N, Debenedetti PG, Stanley HE. Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov 25; 76(5 Pt 1):051201. PubMed ID: 18233643 [Abstract] [Full Text] [Related]
17. Molecular origin of the hydrophobic effect: analysis using the angle-dependent integral equation theory. Kinoshita M. J Chem Phys; 2008 Jan 14; 128(2):024507. PubMed ID: 18205459 [Abstract] [Full Text] [Related]
18. Order and correlation contributions to the entropy of hydrophobic solvation. Liu M, Besford QA, Mulvaney T, Gray-Weale A. J Chem Phys; 2015 Mar 21; 142(11):114117. PubMed ID: 25796241 [Abstract] [Full Text] [Related]
19. Two-phase thermodynamic model for efficient and accurate absolute entropy of water from molecular dynamics simulations. Lin ST, Maiti PK, Goddard WA. J Phys Chem B; 2010 Jun 24; 114(24):8191-8. PubMed ID: 20504009 [Abstract] [Full Text] [Related]
20. Spatial decomposition of solvation free energy based on the 3D integral equation theory of molecular liquid: application to miniproteins. Yamazaki T, Kovalenko A. J Phys Chem B; 2011 Jan 20; 115(2):310-8. PubMed ID: 21166382 [Abstract] [Full Text] [Related] Page: [Next] [New Search]