These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
278 related items for PubMed ID: 22698867
1. Chromatographic models to predict the elution of ionizable analytes by organic modifier gradient in reversed phase liquid chromatography. Andrés A, Téllez A, Rosés M, Bosch E. J Chromatogr A; 2012 Jul 20; 1247():71-80. PubMed ID: 22698867 [Abstract] [Full Text] [Related]
2. Retention prediction and separation optimization of ionizable analytes in reversed-phase liquid chromatography by organic modifier gradients in different eluent pHs. Fasoula S, Zisi Ch, Nikitas P, Pappa-Louisi A. J Chromatogr A; 2013 Aug 30; 1305():131-8. PubMed ID: 23885673 [Abstract] [Full Text] [Related]
3. Properties of the retention time of ionizable analytes in reversed-phase liquid chromatography under organic modifier gradients in different eluent pHs. Zisi Ch, Fasoula S, Pappa-Louisi A, Nikitas P. J Chromatogr A; 2013 Nov 01; 1314():138-41. PubMed ID: 24060093 [Abstract] [Full Text] [Related]
4. pH Gradient as a tool for the separation of ionizable analytes in reversed-phase high-performance chromatography. Wiczling P, Kaliszan R. Anal Chem; 2010 May 01; 82(9):3692-8. PubMed ID: 20353157 [Abstract] [Full Text] [Related]
5. Gradient retention prediction of acid-base analytes in reversed phase liquid chromatography: a simplified approach for acetonitrile-water mobile phases. Andrés A, Rosés M, Bosch E. J Chromatogr A; 2014 Nov 28; 1370():129-34. PubMed ID: 25454137 [Abstract] [Full Text] [Related]
6. Modeling the effects of type and concentration of organic modifiers, column type and chemical structure of analytes on the retention in reversed phase liquid chromatography using a single model. Jouyban A, Soltani S, Shayanfar A, Pappa-Louisi A. J Chromatogr A; 2011 Sep 16; 1218(37):6454-63. PubMed ID: 21820120 [Abstract] [Full Text] [Related]
7. Approaches to model the retention and peak profile in linear gradient reversed-phase liquid chromatography. Baeza-Baeza JJ, Ortiz-Bolsico C, Torres-Lapasió JR, García-Álvarez-Coque MC. J Chromatogr A; 2013 Apr 05; 1284():28-35. PubMed ID: 23453677 [Abstract] [Full Text] [Related]
8. Influence of pH on retention in linear organic modifier gradient RP HPLC. Wiczling P, Kaliszan R. Anal Chem; 2008 Oct 15; 80(20):7855-61. PubMed ID: 18781775 [Abstract] [Full Text] [Related]
9. pH/organic solvent double-gradient reversed-phase HPLC. Wiczling P, Markuszewski MJ, Kaliszan M, Kaliszan R. Anal Chem; 2005 Jan 15; 77(2):449-58. PubMed ID: 15649040 [Abstract] [Full Text] [Related]
10. Simultaneous effect of pH, temperature and mobile phase composition in the chromatographic retention of ionizable compounds. Agrafiotou P, Ràfols C, Castells C, Bosch E, Rosés M. J Chromatogr A; 2011 Jul 29; 1218(30):4995-5009. PubMed ID: 21255784 [Abstract] [Full Text] [Related]
11. Retention of ionisable compounds on high-performance liquid chromatography XVI. Estimation of retention with acetonitrile/water mobile phases from aqueous buffer pH and analyte pKa. Subirats X, Bosch E, Rosés M. J Chromatogr A; 2006 Jul 21; 1121(2):170-7. PubMed ID: 16753172 [Abstract] [Full Text] [Related]
12. Prediction of the chromatographic retention of acid-base compounds in pH buffered methanol-water mobile phases in gradient mode by a simplified model. Andrés A, Rosés M, Bosch E. J Chromatogr A; 2015 Mar 13; 1385():42-8. PubMed ID: 25666497 [Abstract] [Full Text] [Related]
13. Retention models for ionizable compounds in reversed-phase liquid chromatography: effect of variation of mobile phase composition and temperature. Rosés M, Subirats X, Bosch E. J Chromatogr A; 2009 Mar 06; 1216(10):1756-75. PubMed ID: 19167714 [Abstract] [Full Text] [Related]
14. Influence of variation in mobile phase pH and solute pK(a) with the change of organic modifier fraction on QSRRs of hydrophobicity and RP-HPLC retention of weakly acidic compounds. Han SY, Liang C, Zou K, Qiao JQ, Lian HZ, Ge X. Talanta; 2012 Nov 15; 101():64-70. PubMed ID: 23158292 [Abstract] [Full Text] [Related]
15. A simple approach for retention prediction in the pH-gradient reversed-phase liquid chromatography. Pappa-Louisi A, Zisi Ch. Talanta; 2012 May 15; 93():279-84. PubMed ID: 22483911 [Abstract] [Full Text] [Related]
16. Retention prediction of highly polar ionizable solutes under gradient conditions on a mixed-mode reversed-phase and weak anion-exchange stationary phase. Balkatzopoulou P, Fasoula S, Gika H, Nikitas P, Pappa-Louisi A. J Chromatogr A; 2015 May 29; 1396():72-6. PubMed ID: 25900744 [Abstract] [Full Text] [Related]
17. Prediction of retention in reversed-phase liquid chromatography by means of the polarity parameter model. Lázaro E, Izquierdo P, Ràfols C, Rosés M, Bosch E. J Chromatogr A; 2009 Jul 03; 1216(27):5214-27. PubMed ID: 19493533 [Abstract] [Full Text] [Related]
18. Retention times and bandwidths in reversed-phase gradient liquid chromatography of peptides and proteins. Jandera P, Kučerová Z, Urban J. J Chromatogr A; 2011 Dec 09; 1218(49):8874-89. PubMed ID: 21742334 [Abstract] [Full Text] [Related]
19. Mobile phase pH and organic modifier in reversed-phase LC-ESI-MS bioanalytical methods: assessment of sensitivity, chromatography and correlation of retention time with in silico logD predictions. Silvester S. Bioanalysis; 2013 Nov 09; 5(22):2753-70. PubMed ID: 24256357 [Abstract] [Full Text] [Related]
20. Evaluation of ternary mobile phases for reversed-phase liquid chromatography: effect of composition on retention mechanism. Coym JW. J Chromatogr A; 2010 Sep 17; 1217(38):5957-64. PubMed ID: 20723902 [Abstract] [Full Text] [Related] Page: [Next] [New Search]