These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
832 related items for PubMed ID: 22700476
1. In vitro mineralization and bone osteogenesis in poly(ε-caprolactone)/gelatin nanofibers. Alvarez Perez MA, Guarino V, Cirillo V, Ambrosio L. J Biomed Mater Res A; 2012 Nov; 100(11):3008-19. PubMed ID: 22700476 [Abstract] [Full Text] [Related]
2. Electrosprayed hydroxyapatite on polymer nanofibers to differentiate mesenchymal stem cells to osteogenesis. Venugopal J, Rajeswari R, Shayanti M, Low S, Bongso A, Dev VR, Deepika G, Choon AT, Ramakrishna S. J Biomater Sci Polym Ed; 2013 Nov; 24(2):170-84. PubMed ID: 22370175 [Abstract] [Full Text] [Related]
3. Synergistic effect of scaffold composition and dynamic culturing environment in multilayered systems for bone tissue engineering. Rodrigues MT, Martins A, Dias IR, Viegas CA, Neves NM, Gomes ME, Reis RL. J Tissue Eng Regen Med; 2012 Nov; 6(10):e24-30. PubMed ID: 22451140 [Abstract] [Full Text] [Related]
4. Role of nanofibrous poly(caprolactone) scaffolds in human mesenchymal stem cell attachment and spreading for in vitro bone tissue engineering--response to osteogenic regulators. Binulal NS, Deepthy M, Selvamurugan N, Shalumon KT, Suja S, Mony U, Jayakumar R, Nair SV. Tissue Eng Part A; 2010 Feb; 16(2):393-404. PubMed ID: 19772455 [Abstract] [Full Text] [Related]
5. Mimicking nanofibrous hybrid bone substitute for mesenchymal stem cells differentiation into osteogenesis. Gandhimathi C, Venugopal J, Ravichandran R, Sundarrajan S, Suganya S, Ramakrishna S. Macromol Biosci; 2013 Jun; 13(6):696-706. PubMed ID: 23529905 [Abstract] [Full Text] [Related]
6. Modulation of osteogenic differentiation of human mesenchymal stem cells by poly[(L-lactide)-co-(epsilon-caprolactone)]/gelatin nanofibers. Rim NG, Lee JH, Jeong SI, Lee BK, Kim CH, Shin H. Macromol Biosci; 2009 Aug 11; 9(8):795-804. PubMed ID: 19434677 [Abstract] [Full Text] [Related]
7. Surface plasma treatment of poly(caprolactone) micro, nano, and multiscale fibrous scaffolds for enhanced osteoconductivity. Sankar D, Shalumon KT, Chennazhi KP, Menon D, Jayakumar R. Tissue Eng Part A; 2014 Jun 11; 20(11-12):1689-702. PubMed ID: 24377950 [Abstract] [Full Text] [Related]
8. Controlled release of bone morphogenetic protein 2 and dexamethasone loaded in core-shell PLLACL-collagen fibers for use in bone tissue engineering. Su Y, Su Q, Liu W, Lim M, Venugopal JR, Mo X, Ramakrishna S, Al-Deyab SS, El-Newehy M. Acta Biomater; 2012 Feb 11; 8(2):763-71. PubMed ID: 22100346 [Abstract] [Full Text] [Related]
9. Osteogenic differentiation of bone marrow stromal cells on poly(epsilon-caprolactone) nanofiber scaffolds. Ruckh TT, Kumar K, Kipper MJ, Popat KC. Acta Biomater; 2010 Aug 11; 6(8):2949-59. PubMed ID: 20144747 [Abstract] [Full Text] [Related]
10. Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration. Venugopal JR, Low S, Choon AT, Kumar AB, Ramakrishna S. Artif Organs; 2008 May 11; 32(5):388-97. PubMed ID: 18471168 [Abstract] [Full Text] [Related]
11. Collagen-PCL sheath-core bicomponent electrospun scaffolds increase osteogenic differentiation and calcium accretion of human adipose-derived stem cells. Haslauer CM, Moghe AK, Osborne JA, Gupta BS, Loboa EG. J Biomater Sci Polym Ed; 2011 May 11; 22(13):1695-712. PubMed ID: 20836922 [Abstract] [Full Text] [Related]
12. Gelatin nanoparticles loaded poly(ε-caprolactone) nanofibrous semi-synthetic scaffolds for bone tissue engineering. Binulal NS, Natarajan A, Menon D, Bhaskaran VK, Mony U, Nair SV. Biomed Mater; 2012 Dec 11; 7(6):065001. PubMed ID: 23047255 [Abstract] [Full Text] [Related]
13. Osteogenic induction of hBMSCs by electrospun scaffolds with dexamethasone release functionality. Martins A, Duarte AR, Faria S, Marques AP, Reis RL, Neves NM. Biomaterials; 2010 Aug 11; 31(22):5875-85. PubMed ID: 20452016 [Abstract] [Full Text] [Related]
14. PCL-gelatin composite nanofibers electrospun using diluted acetic acid-ethyl acetate solvent system for stem cell-based bone tissue engineering. Binulal NS, Natarajan A, Menon D, Bhaskaran VK, Mony U, Nair SV. J Biomater Sci Polym Ed; 2014 Aug 11; 25(4):325-40. PubMed ID: 24274102 [Abstract] [Full Text] [Related]
15. The performance of dental pulp stem cells on nanofibrous PCL/gelatin/nHA scaffolds. Yang X, Yang F, Walboomers XF, Bian Z, Fan M, Jansen JA. J Biomed Mater Res A; 2010 Apr 11; 93(1):247-57. PubMed ID: 19557787 [Abstract] [Full Text] [Related]
16. Self-assembled extracellular macromolecular matrices and their different osteogenic potential with preosteoblasts and rat bone marrow mesenchymal stromal cells. Bae SE, Bhang SH, Kim BS, Park K. Biomacromolecules; 2012 Sep 10; 13(9):2811-20. PubMed ID: 22813212 [Abstract] [Full Text] [Related]
17. Effects of hydroxyapatite-containing composite nanofibers on osteogenesis of mesenchymal stem cells in vitro and bone regeneration in vivo. Lü LX, Zhang XF, Wang YY, Ortiz L, Mao X, Jiang ZL, Xiao ZD, Huang NP. ACS Appl Mater Interfaces; 2013 Jan 23; 5(2):319-30. PubMed ID: 23267692 [Abstract] [Full Text] [Related]
18. Nanofibrous Mineralized Electrospun Scaffold as a Substrate for Bone Tissue Regeneration. Park H, Lim DJ, Lee SH, Park H. J Biomed Nanotechnol; 2016 Nov 23; 12(11):2076-82. PubMed ID: 29364624 [Abstract] [Full Text] [Related]