These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


487 related items for PubMed ID: 22708628

  • 1. Selectively improving the bio-oil quality by catalytic fast pyrolysis of heavy-metal-polluted biomass: take copper (Cu) as an example.
    Liu WJ, Tian K, Jiang H, Zhang XS, Ding HS, Yu HQ.
    Environ Sci Technol; 2012 Jul 17; 46(14):7849-56. PubMed ID: 22708628
    [Abstract] [Full Text] [Related]

  • 2. Characterization of pyrolytic products obtained from fast pyrolysis of chromated copper arsenate (CCA)- and alkaline copper quaternary compounds (ACQ)-treated wood biomasses.
    Kim JY, Kim TS, Eom IY, Kang SM, Cho TS, Choi IG, Choi JW.
    J Hazard Mater; 2012 Aug 15; 227-228():445-52. PubMed ID: 22698682
    [Abstract] [Full Text] [Related]

  • 3. Fast pyrolysis of potassium impregnated poplar wood and characterization of its influence on the formation as well as properties of pyrolytic products.
    Hwang H, Oh S, Cho TS, Choi IG, Choi JW.
    Bioresour Technol; 2013 Dec 15; 150():359-66. PubMed ID: 24185037
    [Abstract] [Full Text] [Related]

  • 4. The conversion of chicken manure to bio-oil by fast pyrolysis. III. Analyses of chicken manure, bio-oils and char by Py-FIMS and Py-FDMS.
    Schnitzer MI, Monreal CM, Jandl G.
    J Environ Sci Health B; 2008 Jan 15; 43(1):81-95. PubMed ID: 18161578
    [Abstract] [Full Text] [Related]

  • 5. Production and characterization of pyrolytic oils by pyrolysis of waste machinery oil.
    Sinağ A, Gülbay S, Uskan B, Uçar S, Ozgürler SB.
    J Hazard Mater; 2010 Jan 15; 173(1-3):420-6. PubMed ID: 19744779
    [Abstract] [Full Text] [Related]

  • 6. Economic assessment of flash co-pyrolysis of short rotation coppice and biopolymer waste streams.
    Kuppens T, Cornelissen T, Carleer R, Yperman J, Schreurs S, Jans M, Thewys T.
    J Environ Manage; 2010 Dec 15; 91(12):2736-47. PubMed ID: 20724061
    [Abstract] [Full Text] [Related]

  • 7. From biomass to advanced bio-fuel by catalytic pyrolysis/hydro-processing: hydrodeoxygenation of bio-oil derived from biomass catalytic pyrolysis.
    Wang Y, He T, Liu K, Wu J, Fang Y.
    Bioresour Technol; 2012 Mar 15; 108():280-4. PubMed ID: 22281148
    [Abstract] [Full Text] [Related]

  • 8. The effect of torrefaction on the chemistry of fast-pyrolysis bio-oil.
    Meng J, Park J, Tilotta D, Park S.
    Bioresour Technol; 2012 May 15; 111():439-46. PubMed ID: 22370230
    [Abstract] [Full Text] [Related]

  • 9. Supercritical CO2 fractionation of bio-oil produced from wheat-hemlock biomass.
    Naik S, Goud VV, Rout PK, Dalai AK.
    Bioresour Technol; 2010 Oct 15; 101(19):7605-13. PubMed ID: 20493681
    [Abstract] [Full Text] [Related]

  • 10. [Bio-oil production from biomass pyrolysis in molten salt].
    Ji D, Cai T, Ai N, Yu F, Jiang H, Ji J.
    Sheng Wu Gong Cheng Xue Bao; 2011 Mar 15; 27(3):475-81. PubMed ID: 21650030
    [Abstract] [Full Text] [Related]

  • 11. Effect of hydrothermal pretreatment on properties of bio-oil produced from fast pyrolysis of eucalyptus wood in a fluidized bed reactor.
    Chang S, Zhao Z, Zheng A, Li X, Wang X, Huang Z, He F, Li H.
    Bioresour Technol; 2013 Jun 15; 138():321-8. PubMed ID: 23624050
    [Abstract] [Full Text] [Related]

  • 12. Fast Pyrolysis Behavior of Banagrass as a Function of Temperature and Volatiles Residence Time in a Fluidized Bed Reactor.
    Morgan TJ, Turn SQ, George A.
    PLoS One; 2015 Jun 15; 10(8):e0136511. PubMed ID: 26308860
    [Abstract] [Full Text] [Related]

  • 13. Bio-oil production via fast pyrolysis of biomass residues from cassava plants in a fluidised-bed reactor.
    Pattiya A.
    Bioresour Technol; 2011 Jan 15; 102(2):1959-67. PubMed ID: 20864338
    [Abstract] [Full Text] [Related]

  • 14. Bio-based phenols and fuel production from catalytic microwave pyrolysis of lignin by activated carbons.
    Bu Q, Lei H, Wang L, Wei Y, Zhu L, Zhang X, Liu Y, Yadavalli G, Tang J.
    Bioresour Technol; 2014 Jun 15; 162():142-7. PubMed ID: 24747393
    [Abstract] [Full Text] [Related]

  • 15. Preliminary investigation on the production of fuels and bio-char from Chlamydomonas reinhardtii biomass residue after bio-hydrogen production.
    Torri C, Samorì C, Adamiano A, Fabbri D, Faraloni C, Torzillo G.
    Bioresour Technol; 2011 Sep 15; 102(18):8707-13. PubMed ID: 21345670
    [Abstract] [Full Text] [Related]

  • 16. Modification of bio-char derived from fast pyrolysis of biomass and its application in removal of tetracycline from aqueous solution.
    Liu P, Liu WJ, Jiang H, Chen JJ, Li WW, Yu HQ.
    Bioresour Technol; 2012 Oct 15; 121():235-40. PubMed ID: 22858491
    [Abstract] [Full Text] [Related]

  • 17. Selective conversion of bio-oil to light olefins: controlling catalytic cracking for maximum olefins.
    Gong F, Yang Z, Hong C, Huang W, Ning S, Zhang Z, Xu Y, Li Q.
    Bioresour Technol; 2011 Oct 15; 102(19):9247-54. PubMed ID: 21807503
    [Abstract] [Full Text] [Related]

  • 18. Pyrolysis of waste animal fats in a fixed-bed reactor: production and characterization of bio-oil and bio-char.
    Ben Hassen-Trabelsi A, Kraiem T, Naoui S, Belayouni H.
    Waste Manag; 2014 Jan 15; 34(1):210-8. PubMed ID: 24129214
    [Abstract] [Full Text] [Related]

  • 19. Pyrolysis of hornbeam (Carpinus betulus L.) sawdust: Characterization of bio-oil and bio-char.
    Moralı U, Yavuzel N, Şensöz S.
    Bioresour Technol; 2016 Dec 15; 221():682-685. PubMed ID: 27671342
    [Abstract] [Full Text] [Related]

  • 20. Microwave-assisted catalytic pyrolysis of lignocellulosic biomass for production of phenolic-rich bio-oil.
    Mamaeva A, Tahmasebi A, Tian L, Yu J.
    Bioresour Technol; 2016 Jul 15; 211():382-9. PubMed ID: 27030958
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 25.