These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Synthetically useful variants of industrial lipases from Burkholderia cepacia and Pseudomonas fluorescens. Yoshida K, Ono M, Yamamoto T, Utsumi T, Koikeda S, Ema T. Org Biomol Chem; 2017 Oct 25; 15(41):8713-8719. PubMed ID: 28956057 [Abstract] [Full Text] [Related]
5. Stereoselectivity of Pseudomonas cepacia lipase toward secondary alcohols: a quantitative model. Schulz T, Pleiss J, Schmid RD. Protein Sci; 2000 Jun 25; 9(6):1053-62. PubMed ID: 10892799 [Abstract] [Full Text] [Related]
6. Determination of absolute configuration of secondary alcohols using lipase-catalyzed kinetic resolutions. Jing Q, Kazlauskas RJ. Chirality; 2008 May 15; 20(5):724-35. PubMed ID: 18278808 [Abstract] [Full Text] [Related]
7. Resolution of 2-nitroalcohols by Burkholderia cepacia lipase-catalyzed enantioselective acylation. Li N, Hu SB, Feng GY. Biotechnol Lett; 2012 Jan 15; 34(1):153-8. PubMed ID: 21972142 [Abstract] [Full Text] [Related]
8. Mirror-image packing in enantiomer discrimination molecular basis for the enantioselectivity of B.cepacia lipase toward 2-methyl-3-phenyl-1-propanol. Mezzetti A, Schrag JD, Cheong CS, Kazlauskas RJ. Chem Biol; 2005 Apr 15; 12(4):427-37. PubMed ID: 15850979 [Abstract] [Full Text] [Related]
9. Creation of novel enantioselective lipases by SIMPLEX. Koga Y, Yamane T, Nakano H. Methods Mol Biol; 2007 Apr 15; 375():165-81. PubMed ID: 17634602 [Abstract] [Full Text] [Related]
10. Mutant lipase-catalyzed kinetic resolution of bulky phenyl alkyl sec-alcohols: a thermodynamic analysis of enantioselectivity. Vallin M, Syrén PO, Hult K. Chembiochem; 2010 Feb 15; 11(3):411-6. PubMed ID: 20049759 [Abstract] [Full Text] [Related]
11. Kinetic resolution of 4-chloro-2-(1-hydroxyalkyl)pyridines using Pseudomonas cepacia lipase. Busto E, Gotor-Fernández V, Gotor V. Nat Protoc; 2006 Feb 15; 1(4):2061-7. PubMed ID: 17487195 [Abstract] [Full Text] [Related]
12. Rational control of enantioselectivity of lipase by site-directed mutagenesis based on the mechanism. Ema T, Fujii T, Ozaki M, Korenaga T, Sakai T. Chem Commun (Camb); 2005 Oct 07; (37):4650-1. PubMed ID: 16175280 [Abstract] [Full Text] [Related]
13. Control of lipase enantioselectivity by engineering the substrate binding site and access channel. Lafaquière V, Barbe S, Puech-Guenot S, Guieysse D, Cortés J, Monsan P, Siméon T, André I, Remaud-Siméon M. Chembiochem; 2009 Nov 23; 10(17):2760-71. PubMed ID: 19816890 [Abstract] [Full Text] [Related]
14. Prediction of enantioselectivity of lipase catalyzed kinetic resolution using umbrella sampling. Mathpati AC, Bhanage BM. J Biotechnol; 2018 Oct 10; 283():70-80. PubMed ID: 30031094 [Abstract] [Full Text] [Related]
18. A quantitative model for predicting enzyme enantioselectivity: application to Burkholderia cepacia lipase and 3-(aryloxy)-1,2-propanediol derivatives. Tomić S, Kojić-Prodić B. J Mol Graph Model; 2002 Dec 10; 21(3):241-52. PubMed ID: 12463642 [Abstract] [Full Text] [Related]