These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
133 related items for PubMed ID: 22711783
1. Adaptive neuro-fuzzy sliding mode control of multi-joint movement using intraspinal microstimulation. Asadi AR, Erfanian A. IEEE Trans Neural Syst Rehabil Eng; 2012 Jul; 20(4):499-509. PubMed ID: 22711783 [Abstract] [Full Text] [Related]
2. A modular robust control framework for control of movement elicited by multi-electrode intraspinal microstimulation. Roshani A, Erfanian A. J Neural Eng; 2016 Aug; 13(4):046024. PubMed ID: 27432551 [Abstract] [Full Text] [Related]
3. A neuro-sliding-mode control with adaptive modeling of uncertainty for control of movement in paralyzed limbs using functional electrical stimulation. Ajoudani A, Erfanian A. IEEE Trans Biomed Eng; 2009 Jul; 56(7):1771-80. PubMed ID: 19336284 [Abstract] [Full Text] [Related]
4. Decentralized adaptive robust control based on sliding mode and nonlinear compensator for the control of ankle movement using functional electrical stimulation of agonist-antagonist muscles. Kobravi HR, Erfanian A. J Neural Eng; 2009 Aug; 6(4):046007. PubMed ID: 19587395 [Abstract] [Full Text] [Related]
5. Neuro-fuzzy decoding of sensory information from ensembles of simultaneously recorded dorsal root ganglion neurons for functional electrical stimulation applications. Rigosa J, Weber DJ, Prochazka A, Stein RB, Micera S. J Neural Eng; 2011 Aug; 8(4):046019. PubMed ID: 21701057 [Abstract] [Full Text] [Related]
8. Fuzzy logic control of ankle movement using multi-electrode intraspinal microstimulation. Roshani A, Erfanian A. Annu Int Conf IEEE Eng Med Biol Soc; 2013 Aug; 2013():5642-5. PubMed ID: 24111017 [Abstract] [Full Text] [Related]
9. Block-based robust control of stepping using intraspinal microstimulation. Rouhani E, Erfanian A. J Neural Eng; 2018 Aug; 15(4):046026. PubMed ID: 29761788 [Abstract] [Full Text] [Related]
12. Restoring Motor Functions in Paralyzed Limbs through Intraspinal Multielectrode Microstimulation Using Fuzzy Logic Control and Lag Compensator. Roshani A, Erfanian A. Basic Clin Neurosci; 2013 Aug; 4(3):232-43. PubMed ID: 25337352 [Abstract] [Full Text] [Related]
14. Strategies for generating prolonged functional standing using intramuscular stimulation or intraspinal microstimulation. Lau B, Guevremont L, Mushahwar VK. IEEE Trans Neural Syst Rehabil Eng; 2007 Jun; 15(2):273-85. PubMed ID: 17601198 [Abstract] [Full Text] [Related]
15. A novel theoretical framework for the dynamic stability analysis, movement control, and trajectory generation in a multisegment biomechanical model. Iqbal K, Roy A. J Biomech Eng; 2009 Jan; 131(1):011002. PubMed ID: 19045918 [Abstract] [Full Text] [Related]
17. A decentralized modular control framework for robust control of FES-activated walker-assisted paraplegic walking using terminal sliding mode and fuzzy logic control. Nekoukar V, Erfanian A. IEEE Trans Biomed Eng; 2012 Oct; 59(10):2818-27. PubMed ID: 22868526 [Abstract] [Full Text] [Related]
18. Fuzzy control with amplitude/pulse-width modulation of nerve electrical stimulation for muscle force control. Lin CC, Liu WC, Chan CC, Ju MS. J Neural Eng; 2012 Apr; 9(2):026026. PubMed ID: 22422279 [Abstract] [Full Text] [Related]
19. Intraspinal microstimulation preferentially recruits fatigue-resistant muscle fibres and generates gradual force in rat. Bamford JA, Putman CT, Mushahwar VK. J Physiol; 2005 Dec 15; 569(Pt 3):873-84. PubMed ID: 16239281 [Abstract] [Full Text] [Related]
20. A 3D map of the hindlimb motor representation in the lumbar spinal cord in Sprague Dawley rats. Borrell JA, Frost SB, Peterson J, Nudo RJ. J Neural Eng; 2017 Feb 15; 14(1):016007. PubMed ID: 27934789 [Abstract] [Full Text] [Related] Page: [Next] [New Search]