These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
105 related items for PubMed ID: 2271764
21. Tangent counting for objective assessment of erythrocyte shape changes. Grebe R, Schmid-Schönbein H. Biorheology; 1985; 22(6):455-69. PubMed ID: 3834953 [Abstract] [Full Text] [Related]
22. A novel two-layer, coupled finite element approach for modeling the nonlinear elastic and viscoelastic behavior of human erythrocytes. Klöppel T, Wall WA. Biomech Model Mechanobiol; 2011 Jul; 10(4):445-59. PubMed ID: 20725846 [Abstract] [Full Text] [Related]
24. Theoretical model of reticulocyte to erythrocyte shape transformation. Pawlowski PH, Burzyńska B, Zielenkiewicz P. J Theor Biol; 2006 Nov 07; 243(1):24-38. PubMed ID: 16876199 [Abstract] [Full Text] [Related]
25. Hydrodynamics of confined membranes. Gov N, Zilman AG, Safran S. Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jul 07; 70(1 Pt 1):011104. PubMed ID: 15324039 [Abstract] [Full Text] [Related]
26. A study of the electric field distribution in erythrocyte and rod shape cells from direct RF exposure. Muñoz San MS, Sebastián JL, Sancho M, Miranda JM. Phys Med Biol; 2003 Jun 07; 48(11):1649-59. PubMed ID: 12817943 [Abstract] [Full Text] [Related]
27. Elastic energy of curvature-driven bump formation on red blood cell membrane. Waugh RE. Biophys J; 1996 Feb 07; 70(2):1027-35. PubMed ID: 8789121 [Abstract] [Full Text] [Related]
29. Shapes of red blood cells during micropipette aspiration. Pai BK. Biorheology; 1982 Apr 07; 19(1/2):137-41. PubMed ID: 7093447 [Abstract] [Full Text] [Related]
30. Determination of red blood cell membrane viscosity from rheoscopic observations of tank-treading motion. Tran-Son-Tay R, Sutera SP, Rao PR. Biophys J; 1984 Jul 07; 46(1):65-72. PubMed ID: 6743758 [Abstract] [Full Text] [Related]
31. Viscoelastic properties of erythrocyte membranes in high-frequency electric fields. Engelhardt H, Gaub H, Sackmann E. Nature; 1984 Jul 07; 307(5949):378-80. PubMed ID: 6694733 [Abstract] [Full Text] [Related]
32. Elastic properties of the erythrocyte membrane and the critical cell volume of erythrocytes. Mosior M. Biochim Biophys Acta; 1988 Dec 22; 946(2):429-30. PubMed ID: 3207757 [Abstract] [Full Text] [Related]
33. Numerical simulation of cell motion in tube flow. Pozrikidis C. Ann Biomed Eng; 2005 Feb 22; 33(2):165-78. PubMed ID: 15771270 [Abstract] [Full Text] [Related]
35. Numerical simulation of the flow-induced deformation of red blood cells. Pozrikidis C. Ann Biomed Eng; 2003 Nov 22; 31(10):1194-205. PubMed ID: 14649493 [Abstract] [Full Text] [Related]
38. State diagram for wall adhesion of red blood cells in shear flow: from crawling to flipping. Dasanna AK, Fedosov DA, Gompper G, Schwarz US. Soft Matter; 2019 Jul 10; 15(27):5511-5520. PubMed ID: 31241632 [Abstract] [Full Text] [Related]
40. The human erythrocyte membrane skeleton may be an ionic gel. II. Numerical analyses of cell shapes and shape transformations. Stokke BT, Mikkelsen A, Elgsaeter A. Eur Biophys J; 1986 Jul 10; 13(4):219-33. PubMed ID: 3709420 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]