These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
168 related items for PubMed ID: 22717760
1. Convergence of reference frequencies by multiple CF-FM bats (Rhinolophus ferrumequinum nippon) during paired flights evaluated with onboard microphones. Furusawa Y, Hiryu S, Kobayasi KI, Riquimaroux H. J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2012 Sep; 198(9):683-93. PubMed ID: 22717760 [Abstract] [Full Text] [Related]
2. On-board telemetry of emitted sounds from free-flying bats: compensation for velocity and distance stabilizes echo frequency and amplitude. Hiryu S, Shiori Y, Hosokawa T, Riquimaroux H, Watanabe Y. J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2008 Sep; 194(9):841-51. PubMed ID: 18663454 [Abstract] [Full Text] [Related]
3. Adaptive beam-width control of echolocation sounds by CF-FM bats, Rhinolophus ferrumequinum nippon, during prey-capture flight. Matsuta N, Hiryu S, Fujioka E, Yamada Y, Riquimaroux H, Watanabe Y. J Exp Biol; 2013 Apr 01; 216(Pt 7):1210-8. PubMed ID: 23487269 [Abstract] [Full Text] [Related]
4. Species-specific control of acoustic gaze by echolocating bats, Rhinolophus ferrumequinum nippon and Pipistrellus abramus, during flight. Yamada Y, Hiryu S, Watanabe Y. J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2016 Nov 01; 202(11):791-801. PubMed ID: 27566319 [Abstract] [Full Text] [Related]
5. Doppler-shift compensation in the Taiwanese leaf-nosed bat (Hipposideros terasensis) recorded with a telemetry microphone system during flight. Hiryu S, Katsura K, Lin LK, Riquimaroux H, Watanabe Y. J Acoust Soc Am; 2005 Dec 01; 118(6):3927-33. PubMed ID: 16419835 [Abstract] [Full Text] [Related]
6. Development of echolocation calls in the mustached bat, Pteronotus parnellii. Vater M, Kössl M, Foeller E, Coro F, Mora E, Russell IJ. J Neurophysiol; 2003 Oct 01; 90(4):2274-90. PubMed ID: 14534267 [Abstract] [Full Text] [Related]
7. Echolocation behavior of the Japanese horseshoe bat in pursuit of fluttering prey. Mantani S, Hiryu S, Fujioka E, Matsuta N, Riquimaroux H, Watanabe Y. J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2012 Oct 01; 198(10):741-51. PubMed ID: 22777677 [Abstract] [Full Text] [Related]
8. Doppler-shift compensation behavior in horseshoe bats revisited: auditory feedback controls both a decrease and an increase in call frequency. Metzner W, Zhang S, Smotherman M. J Exp Biol; 2002 Jun 01; 205(Pt 11):1607-16. PubMed ID: 12000805 [Abstract] [Full Text] [Related]
9. Pulse-echo interaction in free-flying horseshoe bats, Rhinolophus ferrumequinum nippon. Shiori Y, Hiryu S, Watanabe Y, Riquimaroux H, Watanabe Y. J Acoust Soc Am; 2009 Sep 01; 126(3):EL80-5. PubMed ID: 19739702 [Abstract] [Full Text] [Related]
10. Intra-individual variation in the vocalized frequency of the Taiwanese leaf-nosed bat, Hipposideros terasensis, influenced by conspecific colony members. Hiryu S, Katsura K, Nagato T, Yamazaki H, Lin LK, Watanabe Y, Riquimaroux H. J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 Aug 01; 192(8):807-15. PubMed ID: 16538514 [Abstract] [Full Text] [Related]
11. [Sound duration and sound pattern affect the recovery cycles of inferior collicular neurons in leaf-nosed bat, Hipposideros armiger]. Tang J, Fu ZY, Wu FJ. Sheng Li Xue Bao; 2010 Oct 25; 62(5):469-77. PubMed ID: 20945051 [Abstract] [Full Text] [Related]
12. Modulation of acoustic navigation behaviour by spatial learning in the echolocating bat Rhinolophus ferrumequinum nippon. Yamada Y, Mibe Y, Yamamoto Y, Ito K, Heim O, Hiryu S. Sci Rep; 2020 Jul 01; 10(1):10751. PubMed ID: 32612132 [Abstract] [Full Text] [Related]
13. Doppler-shift compensation by the mustached bat: quantitative data. Keating AW, Henson OW, Henson MM, Lancaster WC, Xie DH. J Exp Biol; 1994 Mar 01; 188():115-29. PubMed ID: 7964378 [Abstract] [Full Text] [Related]
14. Discrimination of wingbeat motion by bats, correlated with echolocation sound pattern. Roverud RC, Nitsche V, Neuweiler G. J Comp Physiol A; 1991 Feb 01; 168(2):259-63. PubMed ID: 2046046 [Abstract] [Full Text] [Related]
15. Echolocation signals of the greater horseshoe bat (Rhinolophus ferrumequinum) in transfer flight and during landing. Tian B, Schnitzler HU. J Acoust Soc Am; 1997 Apr 01; 101(4):2347-64. PubMed ID: 9104033 [Abstract] [Full Text] [Related]
16. Combination-sensitive neurons in the medial geniculate body of the mustached bat: encoding of relative velocity information. Olsen JF, Suga N. J Neurophysiol; 1991 Jun 01; 65(6):1254-74. PubMed ID: 1875241 [Abstract] [Full Text] [Related]
17. Vocalization of echolocation-like pulses for interindividual interaction in horseshoe bats (Rhinolophus ferrumequinum). Kobayasi KI, Hiryu S, Shimozawa R, Riquimaroux H. J Acoust Soc Am; 2012 Nov 01; 132(5):EL417-22. PubMed ID: 23145704 [Abstract] [Full Text] [Related]
18. Different auditory feedback control for echolocation and communication in horseshoe bats. Liu Y, Feng J, Metzner W. PLoS One; 2013 Nov 01; 8(4):e62710. PubMed ID: 23638137 [Abstract] [Full Text] [Related]
19. Role of broadcast harmonics in echo delay perception by big brown bats. Stamper SA, Bates ME, Benedicto D, Simmons JA. J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2009 Jan 01; 195(1):79-89. PubMed ID: 18989677 [Abstract] [Full Text] [Related]
20. Binaural influences on Doppler shift compensation of the horseshoe bat Rhinolophus rouxi. Behrend O, Kössl M, Schuller G. J Comp Physiol A; 1999 Dec 01; 185(6):529-38. PubMed ID: 10633554 [Abstract] [Full Text] [Related] Page: [Next] [New Search]