These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


221 related items for PubMed ID: 22727492

  • 1. Simulation of Lamb wave reflections at plate edges using the semi-analytical finite element method.
    Ahmad ZA, Gabbert U.
    Ultrasonics; 2012 Sep; 52(7):815-20. PubMed ID: 22727492
    [Abstract] [Full Text] [Related]

  • 2. The effects of air gap reflections during air-coupled leaky Lamb wave inspection of thin plates.
    Fan Z, Jiang W, Cai M, Wright WM.
    Ultrasonics; 2016 Feb; 65():282-95. PubMed ID: 26464105
    [Abstract] [Full Text] [Related]

  • 3. Calculation of leaky Lamb waves with a semi-analytical finite element method.
    Hayashi T, Inoue D.
    Ultrasonics; 2014 Aug; 54(6):1460-9. PubMed ID: 24838216
    [Abstract] [Full Text] [Related]

  • 4. Transient analysis of leaky Lamb waves with a semi-analytical finite element method.
    Inoue D, Hayashi T.
    Ultrasonics; 2015 Sep; 62():80-8. PubMed ID: 26048173
    [Abstract] [Full Text] [Related]

  • 5. The simulation of Lamb waves in a cracked plate using the scaled boundary finite element method.
    Gravenkamp H, Prager J, Saputra AA, Song C.
    J Acoust Soc Am; 2012 Sep; 132(3):1358-67. PubMed ID: 22978864
    [Abstract] [Full Text] [Related]

  • 6. Transmission and reflection of the fundamental Lamb modes in a metallic plate with a semi-infinite horizontal crack.
    Ramadas C, Hood A, Khan I, Balasubramaniam K, Joshi M.
    Ultrasonics; 2013 Mar; 53(3):773-81. PubMed ID: 23270575
    [Abstract] [Full Text] [Related]

  • 7. Semi-analytical modeling of anchor loss in plate-mounted resonators.
    Schaal C, M'Closkey R, Mal A.
    Ultrasonics; 2018 Jan; 82():304-312. PubMed ID: 28941397
    [Abstract] [Full Text] [Related]

  • 8. Selective Generation of Lamb Wave Modes in a Finite-Width Plate by Angle-Beam Excitation Method.
    Park SJ, Joo YS, Kim HW, Kim SK.
    Sensors (Basel); 2020 Jul 10; 20(14):. PubMed ID: 32664426
    [Abstract] [Full Text] [Related]

  • 9. Lamb mode conversion at edges. A hybrid boundary element-finite-element solution.
    Galán JM, Abascal R.
    J Acoust Soc Am; 2005 Apr 10; 117(4 Pt 1):1777-84. PubMed ID: 15898624
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. A combined finite element and modal decomposition method to study the interaction of Lamb modes with micro-defects.
    Terrien N, Osmont D, Royer D, Lepoutre F, Déom A.
    Ultrasonics; 2007 Mar 10; 46(1):74-88. PubMed ID: 17208265
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. An investigation of transmission coefficients for finite and semi-infinite coupled plate structures.
    Skeen MB, Kessissoglou NJ.
    J Acoust Soc Am; 2007 Aug 10; 122(2):814-22. PubMed ID: 17672632
    [Abstract] [Full Text] [Related]

  • 14. A Lamb wave source based on the resonant cavity of phononic-crystal plates.
    Sun JH, Wu TT.
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Jan 10; 56(1):121-8. PubMed ID: 19213638
    [Abstract] [Full Text] [Related]

  • 15. Modeling of three-dimensional Lamb wave propagation excited by laser pulses.
    Liu W, Hong JW.
    Ultrasonics; 2015 Jan 10; 55():113-22. PubMed ID: 25109827
    [Abstract] [Full Text] [Related]

  • 16. Application of orthogonality-relation for the separation of Lamb modes at a plate edge: numerical and experimental predictions.
    Ratassepp M, Klauson A, Chati F, Léon F, Décultot D, Maze G, Fritzsche M.
    Ultrasonics; 2015 Mar 10; 57():90-5. PubMed ID: 25465106
    [Abstract] [Full Text] [Related]

  • 17. Phononic plate waves.
    Wu TT, Hsu JC, Sun JH.
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Oct 10; 58(10):2146-61. PubMed ID: 21989878
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Simulations of piezoelectric Lamb wave delay lines using a finite element method.
    Friedrich W, Lerch R, Prestele K, Soldner R.
    IEEE Trans Ultrason Ferroelectr Freq Control; 1990 Oct 10; 37(3):248-54. PubMed ID: 18285038
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.