These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
337 related items for PubMed ID: 22728374
41. Lentivirus-siNgR199 promotes axonal regeneration and functional recovery in rats. Lv B, Yuan W, Xu S, Zhang T, Liu B. Int J Neurosci; 2012 Mar; 122(3):133-9. PubMed ID: 22023338 [Abstract] [Full Text] [Related]
43. Rho-associated kinase II (ROCKII) limits axonal growth after trauma within the adult mouse spinal cord. Duffy P, Schmandke A, Schmandke A, Sigworth J, Narumiya S, Cafferty WB, Strittmatter SM. J Neurosci; 2009 Dec 02; 29(48):15266-76. PubMed ID: 19955379 [Abstract] [Full Text] [Related]
44. Nogo receptor 1 is expressed by nearly all retinal ganglion cells. Solomon AM, Westbrook T, Field GD, McGee AW. PLoS One; 2018 Dec 02; 13(5):e0196565. PubMed ID: 29768445 [Abstract] [Full Text] [Related]
45. IT delivery of ChABC modulates NG2 and promotes GAP-43 axonal regrowth after spinal cord injury. Novotna I, Slovinska L, Vanicky I, Cizek M, Radonak J, Cizkova D. Cell Mol Neurobiol; 2011 Nov 02; 31(8):1129-39. PubMed ID: 21630006 [Abstract] [Full Text] [Related]
46. Increased intrinsic neuronal vulnerability and decreased beneficial reaction of macrophages on axonal regeneration in aged rats. Luo JM, Geng YQ, Zhi Y, Zhang MZ, van Rooijen N, Cui Q. Neurobiol Aging; 2010 Jun 02; 31(6):1003-9. PubMed ID: 18755527 [Abstract] [Full Text] [Related]
47. Combined chondroitinase and KLF7 expression reduce net retraction of sensory and CST axons from sites of spinal injury. Wang Z, Winsor K, Nienhaus C, Hess E, Blackmore MG. Neurobiol Dis; 2017 Mar 02; 99():24-35. PubMed ID: 27988344 [Abstract] [Full Text] [Related]
48. Peripheral nerve injury fails to induce growth of lesioned ascending dorsal column axons into spinal cord scar tissue expressing the axon repellent Semaphorin3A. Pasterkamp RJ, Anderson PN, Verhaagen J. Eur J Neurosci; 2001 Feb 02; 13(3):457-71. PubMed ID: 11168552 [Abstract] [Full Text] [Related]
49. Administration of chondroitinase ABC rostral or caudal to a spinal cord injury site promotes anatomical but not functional plasticity. Tom VJ, Kadakia R, Santi L, Houlé JD. J Neurotrauma; 2009 Dec 02; 26(12):2323-33. PubMed ID: 19659409 [Abstract] [Full Text] [Related]
50. Nogo-66 receptor antagonist peptide promotes axonal regeneration. GrandPré T, Li S, Strittmatter SM. Nature; 2002 May 30; 417(6888):547-51. PubMed ID: 12037567 [Abstract] [Full Text] [Related]
51. Axonal regeneration after optic nerve crush in Nogo-A/B/C knockout mice. Su Y, Wang F, Zhao SG, Pan SH, Liu P, Teng Y, Cui H. Mol Vis; 2008 Feb 04; 14():268-73. PubMed ID: 18334965 [Abstract] [Full Text] [Related]
52. Sciatic nerve conditioning lesion increases macrophage response but it does not promote the regeneration of injured optic nerves. Salegio EA, Pollard AN, Smith M, Zhou XF. Brain Res; 2010 Nov 18; 1361():12-22. PubMed ID: 20863815 [Abstract] [Full Text] [Related]
53. Counteracting the Nogo receptor enhances optic nerve regeneration if retinal ganglion cells are in an active growth state. Fischer D, He Z, Benowitz LI. J Neurosci; 2004 Feb 18; 24(7):1646-51. PubMed ID: 14973241 [Abstract] [Full Text] [Related]
54. Regeneration of axons after nerve transection repair is enhanced by degradation of chondroitin sulfate proteoglycan. Zuo J, Neubauer D, Graham J, Krekoski CA, Ferguson TA, Muir D. Exp Neurol; 2002 Jul 18; 176(1):221-8. PubMed ID: 12093099 [Abstract] [Full Text] [Related]
55. Genetic deletion and pharmacological inhibition of Nogo-66 receptor impairs cognitive outcome after traumatic brain injury in mice. Hånell A, Clausen F, Björk M, Jansson K, Philipson O, Nilsson LN, Hillered L, Weinreb PH, Lee D, McIntosh TK, Gimbel DA, Strittmatter SM, Marklund N. J Neurotrauma; 2010 Jul 18; 27(7):1297-309. PubMed ID: 20486800 [Abstract] [Full Text] [Related]
56. Conditioning injury-induced spinal axon regeneration requires signal transducer and activator of transcription 3 activation. Qiu J, Cafferty WB, McMahon SB, Thompson SW. J Neurosci; 2005 Feb 16; 25(7):1645-53. PubMed ID: 15716400 [Abstract] [Full Text] [Related]
57. Sustained delivery of thermostabilized chABC enhances axonal sprouting and functional recovery after spinal cord injury. Lee H, McKeon RJ, Bellamkonda RV. Proc Natl Acad Sci U S A; 2010 Feb 23; 107(8):3340-5. PubMed ID: 19884507 [Abstract] [Full Text] [Related]
58. Combining Schwann cell bridges and olfactory-ensheathing glia grafts with chondroitinase promotes locomotor recovery after complete transection of the spinal cord. Fouad K, Schnell L, Bunge MB, Schwab ME, Liebscher T, Pearse DD. J Neurosci; 2005 Feb 02; 25(5):1169-78. PubMed ID: 15689553 [Abstract] [Full Text] [Related]
59. Mechanisms of CNS myelin inhibition: evidence for distinct and neuronal cell type specific receptor systems. Giger RJ, Venkatesh K, Chivatakarn O, Raiker SJ, Robak L, Hofer T, Lee H, Rader C. Restor Neurol Neurosci; 2008 Feb 02; 26(2-3):97-115. PubMed ID: 18820405 [Abstract] [Full Text] [Related]
60. Expressing Constitutively Active Rheb in Adult Dorsal Root Ganglion Neurons Enhances the Integration of Sensory Axons that Regenerate Across a Chondroitinase-Treated Dorsal Root Entry Zone Following Dorsal Root Crush. Wu D, Klaw MC, Kholodilov N, Burke RE, Detloff MR, Côté MP, Tom VJ. Front Mol Neurosci; 2016 Feb 02; 9():49. PubMed ID: 27458339 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]