These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
142 related items for PubMed ID: 22729662
1. A novel technique for in situ aggregation of Gluconobacter oxydans using bio-adhesive magnetic nanoparticles. Ni K, Lu H, Wang C, Black KC, Wei D, Ren Y, Messersmith PB. Biotechnol Bioeng; 2012 Dec; 109(12):2970-7. PubMed ID: 22729662 [Abstract] [Full Text] [Related]
2. Electrodialytic bioproduction of xylonic acid in a bioreactor of supplied-oxygen intensification by using immobilized whole-cell Gluconobacter oxydans as biocatalyst. Zhou X, Han J, Xu Y. Bioresour Technol; 2019 Jun; 282():378-383. PubMed ID: 30884457 [Abstract] [Full Text] [Related]
3. Optimization of immobilization for selective oxidation of benzyl alcohol by Gluconobacter oxydans using response surface methodology. Wu J, Wang JL, Li MH, Lin JP, Wei DZ. Bioresour Technol; 2010 Dec; 101(23):8936-41. PubMed ID: 20667717 [Abstract] [Full Text] [Related]
4. A model system for increasing the intensity of whole-cell biocatalysis: investigation of the rate of oxidation of D-sorbitol to L-sorbose by thin bi-layer latex coatings of non-growing Gluconobacter oxydans. Fidaleo M, Charaniya S, Solheid C, Diel U, Laudon M, Ge H, Scriven LE, Flickinger MC. Biotechnol Bioeng; 2006 Oct 20; 95(3):446-58. PubMed ID: 16804947 [Abstract] [Full Text] [Related]
5. Electrochemical polymerization of 1-(4-nitrophenyl)-2,5-di(2-thienyl)-1 H-pyrrole as a novel immobilization platform for microbial sensing. Tuncagil S, Odaci D, Varis S, Timur S, Toppare L. Bioelectrochemistry; 2009 Sep 20; 76(1-2):169-74. PubMed ID: 19520619 [Abstract] [Full Text] [Related]
6. Repeated production of 6-(N-hydroxyethyl)-amino-6-deoxy-α-L-sorbofuranose by immobilized Gluconobacter oxydans cells with a strategy of in situ exhaustive cell regeneration. Hu ZC, Zhao ZY, Ke X, Zheng YG. Bioprocess Biosyst Eng; 2020 Oct 20; 43(10):1781-1789. PubMed ID: 32399751 [Abstract] [Full Text] [Related]
7. Repeated use of immobilized Gluconobacter oxydans cells for conversion of glycerol to dihydroxyacetone. Wei S, Song Q, Wei D. Prep Biochem Biotechnol; 2007 Oct 20; 37(1):67-76. PubMed ID: 17134984 [Abstract] [Full Text] [Related]
8. Use of glycerol for producing 1,3-dihydroxyacetone by Gluconobacter oxydans in an airlift bioreactor. Hu ZC, Zheng YG, Shen YC. Bioresour Technol; 2011 Jul 20; 102(14):7177-82. PubMed ID: 21592784 [Abstract] [Full Text] [Related]
9. [Bioanode for a microbial fuel cell based on Gluconobacter oxydans inummobilized into a polymer matrix]. Alferov SV, Minaĭcheva PR, Arliapov VA, Asulian LD, Alferov VA, Ponomareva ON, Reshetilov AN. Prikl Biokhim Mikrobiol; 2014 Jul 20; 50(6):570-7. PubMed ID: 25726665 [Abstract] [Full Text] [Related]
10. A novel functional conducting polymer as an immobilization platform. Guler E, Soyleyici HC, Demirkol DO, Ak M, Timur S. Mater Sci Eng C Mater Biol Appl; 2014 Jul 01; 40():148-56. PubMed ID: 24857477 [Abstract] [Full Text] [Related]
11. Improving Gluconobacter oxydans performance in the in situ removal of the inhibitor for asymmetric resolution of racemic 1-phenyl-1,2-ethanediol. Li DH, Lin JP, Wei DZ. Bioresour Technol; 2014 May 01; 159():327-33. PubMed ID: 24658106 [Abstract] [Full Text] [Related]
12. Quantifying the sensitivity of G. oxydans ATCC 621H and DSM 3504 to osmotic stress triggered by soluble buffers. Luchterhand B, Fischöder T, Grimm AR, Wewetzer S, Wunderlich M, Schlepütz T, Büchs J. J Ind Microbiol Biotechnol; 2015 Apr 01; 42(4):585-600. PubMed ID: 25645092 [Abstract] [Full Text] [Related]
13. Optimization of 1,3-dihydroxyacetone production from crude glycerol by immobilized Gluconobacter oxydans MTCC 904. Dikshit PK, Moholkar VS. Bioresour Technol; 2016 Sep 01; 216():1058-65. PubMed ID: 26873288 [Abstract] [Full Text] [Related]
14. Repeated biotransformation of glycerol to 1,3-dihydroxyacetone by immobilized cells of Gluconobacter oxydans with glycerol- and urea-feeding strategy in a bubble column bioreactor. Hu ZC, Tian SY, Ruan LJ, Zheng YG. Bioresour Technol; 2017 Jun 01; 233():144-149. PubMed ID: 28279907 [Abstract] [Full Text] [Related]
15. Kinetic analysis of dihydroxyacetone production from crude glycerol by immobilized cells of Gluconobacter oxydans MTCC 904. Dikshit PK, Moholkar VS. Bioresour Technol; 2016 Sep 01; 216():948-57. PubMed ID: 27343447 [Abstract] [Full Text] [Related]
16. Facile, high efficiency immobilization of lipase enzyme on magnetic iron oxide nanoparticles via a biomimetic coating. Ren Y, Rivera JG, He L, Kulkarni H, Lee DK, Messersmith PB. BMC Biotechnol; 2011 Jun 08; 11():63. PubMed ID: 21649934 [Abstract] [Full Text] [Related]
17. Production of Gluconobacter oxydans cells from low-cost culture medium for conversion of glycerol to dihydroxyacetone. Wei S, Song Q, Wei D. Prep Biochem Biotechnol; 2007 Jun 08; 37(2):113-21. PubMed ID: 17454822 [Abstract] [Full Text] [Related]
18. Continuous co-production of biomass and bio-oxidized metabolite (sorbose) using Gluconobacter oxydans in a high-oxygen tension bioreactor. Zhou X, Hua X, Zhou X, Xu Y, Zhang W. Bioresour Technol; 2019 Apr 08; 277():221-224. PubMed ID: 30658939 [Abstract] [Full Text] [Related]
19. Cost-practical of glycolic acid bioproduction by immobilized whole-cell catalysis accompanied with compressed oxygen supplied to enhance mass transfer. Hua X, Du G, Xu Y. Bioresour Technol; 2019 Jul 08; 283():326-331. PubMed ID: 30921586 [Abstract] [Full Text] [Related]
20. Enhancement of 5-keto-d-gluconate production by a recombinant Gluconobacter oxydans using a dissolved oxygen control strategy. Yuan J, Wu M, Lin J, Yang L. J Biosci Bioeng; 2016 Jul 08; 122(1):10-6. PubMed ID: 26896860 [Abstract] [Full Text] [Related] Page: [Next] [New Search]