These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


156 related items for PubMed ID: 2273445

  • 1. Sodium and pH dependent carrier-mediated transport of antibiotic, fosfomycin, in the rat intestinal brush-border membrane.
    Ishizawa T, Tsuji A, Tamai I, Terasaki T, Hosoi K, Fukatsu S.
    J Pharmacobiodyn; 1990 May; 13(5):292-300. PubMed ID: 2273445
    [Abstract] [Full Text] [Related]

  • 2. Mechanisms of intestinal absorption of the antibiotic, fosfomycin, in brush-border membrane vesicles in rabbits and humans.
    Ishizawa T, Sadahiro S, Hosoi K, Tamai I, Terasaki T, Tsuji A.
    J Pharmacobiodyn; 1992 Sep; 15(9):481-9. PubMed ID: 1287183
    [Abstract] [Full Text] [Related]

  • 3. Carrier-mediated uptake of nicotinic acid by rat intestinal brush-border membrane vesicles and relation to monocarboxylic acid transport.
    Simanjuntak MT, Tamai I, Terasaki T, Tsuji A.
    J Pharmacobiodyn; 1990 May; 13(5):301-9. PubMed ID: 2273446
    [Abstract] [Full Text] [Related]

  • 4. Effect of carrier-mediated transport system on intestinal fosfomycin absorption in situ and in vivo.
    Ishizawa T, Hayashi M, Awazu S.
    J Pharmacobiodyn; 1991 Feb; 14(2):82-6. PubMed ID: 1870077
    [Abstract] [Full Text] [Related]

  • 5. Phosphonocarboxylic acids as specific inhibitors of Na+-dependent transport of phosphate across renal brush border membrane.
    Szczepanska-Konkel M, Yusufi AN, VanScoy M, Webster SK, Dousa TP.
    J Biol Chem; 1986 May 15; 261(14):6375-83. PubMed ID: 3009455
    [Abstract] [Full Text] [Related]

  • 6. Mechanisms of phosphate uptake into brush-border membrane vesicles from goat jejunum.
    Schröder B, Breves G.
    J Comp Physiol B; 1996 May 15; 166(3):230-40. PubMed ID: 8765667
    [Abstract] [Full Text] [Related]

  • 7. pH gradient-stimulated phosphate transport in outer medullary brush-border membranes.
    Quamme GA, Walker JJ, Yan TS.
    Am J Physiol; 1989 Oct 15; 257(4 Pt 2):F639-48. PubMed ID: 2679145
    [Abstract] [Full Text] [Related]

  • 8. Biotin transport in rat intestinal brush-border membrane vesicles.
    Said HM, Redha R.
    Biochim Biophys Acta; 1988 Nov 22; 945(2):195-201. PubMed ID: 3191121
    [Abstract] [Full Text] [Related]

  • 9. Proton-cotransport of pravastatin across intestinal brush-border membrane.
    Tamai I, Takanaga H, Maeda H, Ogihara T, Yoneda M, Tsuji A.
    Pharm Res; 1995 Nov 22; 12(11):1727-32. PubMed ID: 8592677
    [Abstract] [Full Text] [Related]

  • 10. Transport of glutamine in rat intestinal brush-border membrane vesicles.
    Van Voorhis K, Said HM, Ghishan FK, Abumrad NN.
    Biochim Biophys Acta; 1989 Jan 16; 978(1):51-5. PubMed ID: 2492432
    [Abstract] [Full Text] [Related]

  • 11. Na+ and H+ gradient-dependent transport of p-aminohippurate in membrane vesicles from dog kidney cortex.
    Russel FG, van der Linden PE, Vermeulen WG, Heijn M, van Os CH, van Ginneken CA.
    Biochem Pharmacol; 1988 Jul 01; 37(13):2639-49. PubMed ID: 3390224
    [Abstract] [Full Text] [Related]

  • 12. Inhibition of Na+-Pi cotransporter in small gut brush border by phosphonocarboxylic acids.
    Loghman-Adham M, Szczepanska-Konkel M, Yusufi AN, Van Scoy M, Dousa TP.
    Am J Physiol; 1987 Feb 01; 252(2 Pt 1):G244-9. PubMed ID: 2950771
    [Abstract] [Full Text] [Related]

  • 13. H+ gradient-dependent and carrier-mediated transport of cefixime, a new cephalosporin antibiotic, across brush-border membrane vesicles from rat small intestine.
    Tsuji A, Terasaki T, Tamai I, Hirooka H.
    J Pharmacol Exp Ther; 1987 May 01; 241(2):594-601. PubMed ID: 3572815
    [Abstract] [Full Text] [Related]

  • 14. Participation of monocarboxylic anion and bicarbonate exchange system for the transport of acetic acid and monocarboxylic acid drugs in the small intestinal brush-border membrane vesicles.
    Simanjuntak MT, Terasaki T, Tamai I, Tsuji A.
    J Pharmacobiodyn; 1991 Sep 01; 14(9):501-8. PubMed ID: 1779404
    [Abstract] [Full Text] [Related]

  • 15. Sodium-proton exchange in human ileal brush-border membrane vesicles.
    Ramaswamy K, Harig JM, Kleinman JG, Harris MS, Barry JA.
    Biochim Biophys Acta; 1989 Jun 06; 981(2):193-9. PubMed ID: 2543457
    [Abstract] [Full Text] [Related]

  • 16. Mechanism of thiamine uptake by human jejunal brush-border membrane vesicles.
    Dudeja PK, Tyagi S, Kavilaveettil RJ, Gill R, Said HM.
    Am J Physiol Cell Physiol; 2001 Sep 06; 281(3):C786-92. PubMed ID: 11502555
    [Abstract] [Full Text] [Related]

  • 17. Transport characteristics of glutamine in human intestinal brush-border membrane vesicles.
    Said HM, Van Voorhis K, Ghishan FK, Abumurad N, Nylander W, Redha R.
    Am J Physiol; 1989 Jan 06; 256(1 Pt 1):G240-5. PubMed ID: 2492158
    [Abstract] [Full Text] [Related]

  • 18. pH-dependent fluoride transport in intestinal brush border membrane vesicles.
    He H, Ganapathy V, Isales CM, Whitford GM.
    Biochim Biophys Acta; 1998 Jul 17; 1372(2):244-54. PubMed ID: 9675300
    [Abstract] [Full Text] [Related]

  • 19. Mechanism of Cl- transport in eel intestinal brush-border membrane vesicles.
    De Giorgi A, Carnimeo L, Corcelli A.
    Pflugers Arch; 1992 Apr 17; 420(5-6):551-8. PubMed ID: 1614830
    [Abstract] [Full Text] [Related]

  • 20. pH gradient as an additional driving force in the renal re-absorption of phosphate.
    Strévey J, Giroux S, Béliveau R.
    Biochem J; 1990 Nov 01; 271(3):687-92. PubMed ID: 2244874
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.