These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


1210 related items for PubMed ID: 22734577

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Post-sleep inertia performance benefits of longer naps in simulated nightwork and extended operations.
    Mulrine HM, Signal TL, van den Berg MJ, Gander PH.
    Chronobiol Int; 2012 Nov; 29(9):1249-57. PubMed ID: 23002951
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Effects of sleep inertia after daytime naps vary with executive load and time of day.
    Groeger JA, Lo JC, Burns CG, Dijk DJ.
    Behav Neurosci; 2011 Apr; 125(2):252-60. PubMed ID: 21463024
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Temporal placement of a nap for alertness: contributions of circadian phase and prior wakefulness.
    Dinges DF, Orne MT, Whitehouse WG, Orne EC.
    Sleep; 1987 Aug; 10(4):313-29. PubMed ID: 3659730
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. The relationship between subjective and objective sleepiness and performance during a simulated night-shift with a nap countermeasure.
    Tremaine R, Dorrian J, Lack L, Lovato N, Ferguson S, Zhou X, Roach G.
    Appl Ergon; 2010 Dec; 42(1):52-61. PubMed ID: 20471003
    [Abstract] [Full Text] [Related]

  • 11. Contribution of core body temperature, prior wake time, and sleep stages to cognitive throughput performance during forced desynchrony.
    Darwent D, Ferguson SA, Sargent C, Paech GM, Williams L, Zhou X, Matthews RW, Dawson D, Kennaway DJ, Roach GD.
    Chronobiol Int; 2010 Jul; 27(5):898-910. PubMed ID: 20636204
    [Abstract] [Full Text] [Related]

  • 12. Scheduled napping as a countermeasure to sleepiness in air traffic controllers.
    Signal TL, Gander PH, Anderson H, Brash S.
    J Sleep Res; 2009 Mar; 18(1):11-9. PubMed ID: 19250171
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Sleep inertia associated with a 10-min nap before the commute home following a night shift: A laboratory simulation study.
    Hilditch CJ, Dorrian J, Centofanti SA, Van Dongen HP, Banks S.
    Accid Anal Prev; 2017 Feb; 99(Pt B):411-415. PubMed ID: 26589387
    [Abstract] [Full Text] [Related]

  • 16. Good sleep, bad sleep! The role of daytime naps in healthy adults.
    Dhand R, Sohal H.
    Curr Opin Pulm Med; 2006 Nov; 12(6):379-82. PubMed ID: 17053484
    [Abstract] [Full Text] [Related]

  • 17. The effects of nighttime napping on sleep, sleep inertia, and performance during simulated 16 h night work: a pilot study.
    Oriyama S, Miyakoshi Y.
    J Occup Health; 2018 Mar 27; 60(2):172-181. PubMed ID: 29269604
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Simulated driving under the influence of extended wake, time of day and sleep restriction.
    Matthews RW, Ferguson SA, Zhou X, Kosmadopoulos A, Kennaway DJ, Roach GD.
    Accid Anal Prev; 2012 Mar 27; 45 Suppl():55-61. PubMed ID: 22239933
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 61.