These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
143 related items for PubMed ID: 22736248
1. A simple method to clamp end-tidal carbon dioxide during rest and exercise. Olin JT, Dimmen AC, Subudhi AW, Roach RC. Eur J Appl Physiol; 2012 Sep; 112(9):3439-44. PubMed ID: 22736248 [Abstract] [Full Text] [Related]
2. Breathing pattern and gas exchange at peak exercise in COPD patients with and without tidal flow limitation at rest. Díaz O, Villafranca C, Ghezzo H, Borzone G, Leiva A, Milic-Emili J, Lisboa C. Eur Respir J; 2001 Jun; 17(6):1120-7. PubMed ID: 11491153 [Abstract] [Full Text] [Related]
3. Breathing patterns during slow and fast ramp exercise in man. Scheuermann BW, Kowalchuk JM. Exp Physiol; 1999 Jan; 84(1):109-20. PubMed ID: 10081711 [Abstract] [Full Text] [Related]
4. Breath holding as an example of extreme hypoventilation: experimental testing of a new model describing alveolar gas pathways. Taboni A, Fagoni N, Fontolliet T, Grasso GS, Moia C, Vinetti G, Ferretti G. Exp Physiol; 2020 Dec; 105(12):2216-2225. PubMed ID: 32991750 [Abstract] [Full Text] [Related]
5. Use of 'ideal' alveolar air equations and corrected end-tidal PCO2 to estimate arterial PCO2 and physiological dead space during exercise in patients with heart failure. Van Iterson EH, Olson TP. Int J Cardiol; 2018 Jan 01; 250():176-182. PubMed ID: 29054325 [Abstract] [Full Text] [Related]
6. Clinical usefulness of end-tidal CO2 profiles during incremental exercise in patients with chronic thromboembolic pulmonary hypertension. Ramos RP, Ferreira EVM, Valois FM, Cepeda A, Messina CMS, Oliveira RK, Araújo ATV, Teles CA, Neder JA, Nery LE, Ota-Arakaki JS. Respir Med; 2016 Nov 01; 120():70-77. PubMed ID: 27817818 [Abstract] [Full Text] [Related]
7. [Cardiopulmonary exercise capacity in adult patients with atrial septal defect]. Suchoń E, Podolec P, Tomkiewicz-Pajak L, Kostkiewicz M, Mura A, Pasowicz M, Tracz W. Przegl Lek; 2002 Nov 01; 59(9):747-51. PubMed ID: 12632902 [Abstract] [Full Text] [Related]
8. Influence of smoking and obesity on alveolar-arterial gas pressure differences and dead space ventilation at rest and peak exercise in healthy men and women. Gläser S, Ittermann T, Koch B, Schäper C, Felix SB, Völzke H, Könemann R, Ewert R, Hansen JE. Respir Med; 2013 Jun 01; 107(6):919-26. PubMed ID: 23510666 [Abstract] [Full Text] [Related]
9. The effects of low levels of CO2 on ventilation during rest and exercise. Loeppky JA. Aviat Space Environ Med; 1998 Apr 01; 69(4):368-73. PubMed ID: 9561284 [Abstract] [Full Text] [Related]
10. Gas exchange response to exercise in patients with chronic heart failure. Bellone A, Rusconi F, Frisinghelli A, Aliprandi P, Castelli C, Confalonieri M, Palange P. Monaldi Arch Chest Dis; 1999 Feb 01; 54(1):3-6. PubMed ID: 10218364 [Abstract] [Full Text] [Related]
11. The increased ventilatory response to exercise in pregnancy reflects alterations in the respiratory control systems ventilatory recruitment threshold for CO2. Jensen D, Webb KA, O'Donnell DE. Respir Physiol Neurobiol; 2010 Apr 30; 171(2):75-82. PubMed ID: 20227527 [Abstract] [Full Text] [Related]
12. Estimation of arterial PCO2 from a lung model during ramp exercise in healthy young subjects. Thomas V, Costes F, Busso T. Respir Physiol Neurobiol; 2007 Jun 15; 156(3):259-65. PubMed ID: 17166781 [Abstract] [Full Text] [Related]
13. Modeling of end-tidal and arterial PCO2 gradient: comparison with experimental data. Benallal H, Denis C, Prieur F, Busso T. Med Sci Sports Exerc; 2002 Apr 15; 34(4):622-9. PubMed ID: 11932570 [Abstract] [Full Text] [Related]
14. Ventilatory mechanics and gas exchange during exercise before and after lung volume reduction surgery. Tschernko EM, Gruber EM, Jaksch P, Jandrasits O, Jantsch U, Brack T, Lahrmann H, Klepetko W, Wanke T. Am J Respir Crit Care Med; 1998 Nov 15; 158(5 Pt 1):1424-31. PubMed ID: 9817689 [Abstract] [Full Text] [Related]
15. End tidal-to-arterial CO2 and O2 gas gradients at low- and high-altitude during dynamic end-tidal forcing. Tymko MM, Ainslie PN, MacLeod DB, Willie CK, Foster GE. Am J Physiol Regul Integr Comp Physiol; 2015 Jun 01; 308(11):R895-906. PubMed ID: 25810386 [Abstract] [Full Text] [Related]
16. Comparison of exercise cardiac output by the Fick principle using oxygen and carbon dioxide. Sun XG, Hansen JE, Ting H, Chuang ML, Stringer WW, Adame D, Wasserman K. Chest; 2000 Sep 01; 118(3):631-40. PubMed ID: 10988183 [Abstract] [Full Text] [Related]
17. Breathing pattern in highly competitive cyclists during incremental exercise. Lucía A, Carvajal A, Calderón FJ, Alfonso A, Chicharro JL. Eur J Appl Physiol Occup Physiol; 1999 May 01; 79(6):512-21. PubMed ID: 10344461 [Abstract] [Full Text] [Related]
18. Validity of arterialized earlobe blood gases at rest and exercise in normoxia and hypoxia. Mollard P, Bourdillon N, Letournel M, Herman H, Gibert S, Pichon A, Woorons X, Richalet JP. Respir Physiol Neurobiol; 2010 Jul 31; 172(3):179-83. PubMed ID: 20493971 [Abstract] [Full Text] [Related]
19. Effects of deep breaths on subsequent ventilation in man during rest and exercise. Fernando SS, Saunders KB. J Physiol; 1994 Dec 01; 481 ( Pt 2)(Pt 2):479-86. PubMed ID: 7738839 [Abstract] [Full Text] [Related]
20. Performance of a compact end-tidal forcing system. Koehle MS, Giles LV, Curtis AN, Walsh ML, White MD. Respir Physiol Neurobiol; 2009 Jun 30; 167(2):155-61. PubMed ID: 19446505 [Abstract] [Full Text] [Related] Page: [Next] [New Search]