These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


110 related items for PubMed ID: 22740251

  • 1. A novel thermodynamic state recursion method for description of nonideal nonlinear chromatographic process of frontal analysis.
    Liu Q, OuYang L, Liang H, Li N, Geng X.
    J Sep Sci; 2012 Jun; 35(12):1411-23. PubMed ID: 22740251
    [Abstract] [Full Text] [Related]

  • 2. Characterization and modeling of nonlinear hydrophobic interaction chromatographic systems.
    Nagrath D, Xia F, Cramer SM.
    J Chromatogr A; 2011 Mar 04; 1218(9):1219-26. PubMed ID: 21255785
    [Abstract] [Full Text] [Related]

  • 3. Simultaneous determination of two-component isotherm parameters and lumped mass transfer coefficients in RPLC with the 0-1 model-inverse method.
    OuYang LF, Liu Q, Liang H, Shi Y, Shi J, Yin X.
    J Sep Sci; 2013 Feb 04; 36(4):645-57. PubMed ID: 23341339
    [Abstract] [Full Text] [Related]

  • 4. [Non-equilibrium thermodynamic separation theory of nonlinear chromatography. II. The 0-1 model for nonlinear-mass transfer kinetic processes].
    Liang H, Jia Z.
    Se Pu; 2007 Nov 04; 25(6):785-98. PubMed ID: 18257291
    [Abstract] [Full Text] [Related]

  • 5. Evaluating the performance of different multicolumn setups for chromatographic separation of proteins on hydrophobic interaction chromatography media by a numerical study.
    Bochenek R, Marek W, Piątkowski W, Antos D.
    J Chromatogr A; 2013 Aug 02; 1301():60-72. PubMed ID: 23791144
    [Abstract] [Full Text] [Related]

  • 6. Adsorption equilibria of proline in hydrophilic interaction chromatography.
    Vajda P, Felinger A, Cavazzini A.
    J Chromatogr A; 2010 Sep 17; 1217(38):5965-70. PubMed ID: 20719320
    [Abstract] [Full Text] [Related]

  • 7. An improved capillary model for describing the microstructure characteristics, fluid hydrodynamics and breakthrough performance of proteins in cryogel beds.
    Yun J, Jespersen GR, Kirsebom H, Gustavsson PE, Mattiasson B, Galaev IY.
    J Chromatogr A; 2011 Aug 12; 1218(32):5487-97. PubMed ID: 21742336
    [Abstract] [Full Text] [Related]

  • 8. Determination of competitive isotherms of enantiomers by a hybrid inverse method using overloaded band profiles and the periodic state of the simulated moving-bed process.
    Araújo JM, Rodrigues RC, Mota JP.
    J Chromatogr A; 2008 May 02; 1189(1-2):302-13. PubMed ID: 18243230
    [Abstract] [Full Text] [Related]

  • 9. Estimation of single solute adsorption isotherms applying the nonlinear frequency response method using non-optimal frequencies.
    Ilić M, Petkovska M, Seidel-Morgenstern A.
    J Chromatogr A; 2008 Jul 25; 1200(2):183-92. PubMed ID: 18555261
    [Abstract] [Full Text] [Related]

  • 10. Recombinant protein purification using gradient-assisted simulated moving bed hydrophobic interaction chromatography. Part I: selection of chromatographic system and estimation of adsorption isotherms.
    Palani S, Gueorguieva L, Rinas U, Seidel-Morgenstern A, Jayaraman G.
    J Chromatogr A; 2011 Sep 16; 1218(37):6396-401. PubMed ID: 21816402
    [Abstract] [Full Text] [Related]

  • 11. High-throughput protein precipitation and hydrophobic interaction chromatography: salt effects and thermodynamic interrelation.
    Nfor BK, Hylkema NN, Wiedhaup KR, Verhaert PD, van der Wielen LA, Ottens M.
    J Chromatogr A; 2011 Dec 09; 1218(49):8958-73. PubMed ID: 21868020
    [Abstract] [Full Text] [Related]

  • 12. Solubility and binding properties of PEGylated lysozyme derivatives with increasing molecular weight on hydrophobic-interaction chromatographic resins.
    Müller E, Josic D, Schröder T, Moosmann A.
    J Chromatogr A; 2010 Jul 09; 1217(28):4696-703. PubMed ID: 20570270
    [Abstract] [Full Text] [Related]

  • 13. Optimization of hydrophobic interaction chromatography using a mathematical model of elution curves of a protein mixture.
    Lienqueo ME, Shene C, Asenjo J.
    J Mol Recognit; 2009 Jul 09; 22(2):110-20. PubMed ID: 18979460
    [Abstract] [Full Text] [Related]

  • 14. Current insights on protein behaviour in hydrophobic interaction chromatography.
    Lienqueo ME, Mahn A, Salgado JC, Asenjo JA.
    J Chromatogr B Analyt Technol Biomed Life Sci; 2007 Apr 15; 849(1-2):53-68. PubMed ID: 17141587
    [Abstract] [Full Text] [Related]

  • 15. Theoretical study of the accuracy of the pulse method, frontal analysis, and frontal analysis by characteristic points for the determination of single component adsorption isotherms.
    Andrzejewska A, Kaczmarski K, Guiochon G.
    J Chromatogr A; 2009 Feb 13; 1216(7):1067-83. PubMed ID: 19147153
    [Abstract] [Full Text] [Related]

  • 16. Protein separation and enrichment by counter-current chromatography using reverse micelle solvent systems.
    Shen CW, Yu T.
    J Chromatogr A; 2007 Jun 01; 1151(1-2):164-8. PubMed ID: 17289061
    [Abstract] [Full Text] [Related]

  • 17. Modeling of adsorption in hydrophobic interaction chromatography systems using a preferential interaction quadratic isotherm.
    Xia F, Nagrath D, Cramer SM.
    J Chromatogr A; 2003 Mar 07; 989(1):47-54. PubMed ID: 12641281
    [Abstract] [Full Text] [Related]

  • 18. Protein interactions in hydrophobic charge induction chromatography (HCIC).
    Ghose S, Hubbard B, Cramer SM.
    Biotechnol Prog; 2005 Mar 07; 21(2):498-508. PubMed ID: 15801790
    [Abstract] [Full Text] [Related]

  • 19. Recursion equations in predicting band width under gradient elution.
    Liang H, Liu Y.
    J Chromatogr A; 2004 Jun 18; 1040(1):19-31. PubMed ID: 15248422
    [Abstract] [Full Text] [Related]

  • 20. Characterization of adsorption processes in analytical liquid-solid chromatography.
    Fornstedt T.
    J Chromatogr A; 2010 Feb 05; 1217(6):792-812. PubMed ID: 20053406
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.