These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Adsorption of aromatic compounds by carbonaceous adsorbents: a comparative study on granular activated carbon, activated carbon fiber, and carbon nanotubes. Zhang S, Shao T, Kose HS, Karanfil T. Environ Sci Technol; 2010 Aug 15; 44(16):6377-83. PubMed ID: 20704238 [Abstract] [Full Text] [Related]
5. Adsorption of organic contaminants by graphene nanosheets, carbon nanotubes and granular activated carbons under natural organic matter preloading conditions. Ersan G, Kaya Y, Apul OG, Karanfil T. Sci Total Environ; 2016 Sep 15; 565():811-817. PubMed ID: 27107611 [Abstract] [Full Text] [Related]
6. Adsorption of aromatic organic contaminants by graphene nanosheets: comparison with carbon nanotubes and activated carbon. Apul OG, Wang Q, Zhou Y, Karanfil T. Water Res; 2013 Mar 15; 47(4):1648-54. PubMed ID: 23313232 [Abstract] [Full Text] [Related]
8. Adsorption and desorption of atrazine on carbon nanotubes. Yan XM, Shi BY, Lu JJ, Feng CH, Wang DS, Tang HX. J Colloid Interface Sci; 2008 May 01; 321(1):30-8. PubMed ID: 18294649 [Abstract] [Full Text] [Related]
12. Multi-walled carbon nanotubes as adsorbents for the removal of parts per billion levels of hexavalent chromium from aqueous solution. Pillay K, Cukrowska EM, Coville NJ. J Hazard Mater; 2009 Jul 30; 166(2-3):1067-75. PubMed ID: 19157694 [Abstract] [Full Text] [Related]
13. Pore blockage effect of NOM on atrazine adsorption kinetics of PAC: the roles of PAC pore size distribution and NOM molecular weight. Li Q, Snoeyink VL, Mariñas BJ, Campos C. Water Res; 2003 Dec 30; 37(20):4863-72. PubMed ID: 14604632 [Abstract] [Full Text] [Related]
14. Adsorption kinetics and aggregation for three classes of carbonaceous adsorbents in the presence of natural organic matter. Ersan G, Kaya Y, Ersan MS, Apul OG, Karanfil T. Chemosphere; 2019 Aug 30; 229():515-524. PubMed ID: 31100622 [Abstract] [Full Text] [Related]
15. Comparison of natural organic matter adsorption capacities of super-powdered activated carbon and powdered activated Carbon. Ando N, Matsui Y, Kurotobi R, Nakano Y, Matsushita T, Ohno K. Water Res; 2010 Jul 30; 44(14):4127-36. PubMed ID: 20561665 [Abstract] [Full Text] [Related]
16. Modeling high adsorption capacity and kinetics of organic macromolecules on super-powdered activated carbon. Matsui Y, Ando N, Yoshida T, Kurotobi R, Matsushita T, Ohno K. Water Res; 2011 Feb 30; 45(4):1720-8. PubMed ID: 21172719 [Abstract] [Full Text] [Related]
17. Adsorption characteristics of N-nitrosodimethylamine from aqueous solution on surface-modified activated carbons. Dai X, Zou L, Yan Z, Millikan M. J Hazard Mater; 2009 Aug 30; 168(1):51-6. PubMed ID: 19304376 [Abstract] [Full Text] [Related]
18. Pecan shell-based granular activated carbon for treatment of chemical oxygen demand (COD) in municipal wastewater. Bansode RR, Losso JN, Marshall WE, Rao RM, Portier RJ. Bioresour Technol; 2004 Sep 30; 94(2):129-35. PubMed ID: 15158504 [Abstract] [Full Text] [Related]
19. Simulating adsorption of organic pollutants on finite (8,0) single-walled carbon nanotubes in water. Zou M, Zhang J, Chen J, Li X. Environ Sci Technol; 2012 Aug 21; 46(16):8887-94. PubMed ID: 22816771 [Abstract] [Full Text] [Related]
20. Activated carbon/iron oxide composites for the removal of atrazine from aqueous medium. Castro CS, Guerreiro MC, Gonçalves M, Oliveira LC, Anastácio AS. J Hazard Mater; 2009 May 30; 164(2-3):609-14. PubMed ID: 18838216 [Abstract] [Full Text] [Related] Page: [Next] [New Search]