These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
297 related items for PubMed ID: 22746189
1. Optical aptasensors for the analysis of the vascular endothelial growth factor (VEGF). Freeman R, Girsh J, Jou AF, Ho JA, Hug T, Dernedde J, Willner I. Anal Chem; 2012 Jul 17; 84(14):6192-8. PubMed ID: 22746189 [Abstract] [Full Text] [Related]
2. Chemiluminescent and chemiluminescence resonance energy transfer (CRET) detection of DNA, metal ions, and aptamer-substrate complexes using hemin/G-quadruplexes and CdSe/ZnS quantum dots. Freeman R, Liu X, Willner I. J Am Chem Soc; 2011 Aug 03; 133(30):11597-604. PubMed ID: 21678959 [Abstract] [Full Text] [Related]
3. Chemiluminescence and chemiluminescence resonance energy transfer (CRET) aptamer sensors using catalytic hemin/G-quadruplexes. Liu X, Freeman R, Golub E, Willner I. ACS Nano; 2011 Sep 27; 5(9):7648-55. PubMed ID: 21866963 [Abstract] [Full Text] [Related]
4. CdTe/CdSe quantum dot-based fluorescent aptasensor with hemin/G-quadruplex DNzyme for sensitive detection of lysozyme using rolling circle amplification and strand hybridization. Qiu Z, Shu J, He Y, Lin Z, Zhang K, Lv S, Tang D. Biosens Bioelectron; 2017 Jan 15; 87():18-24. PubMed ID: 27504793 [Abstract] [Full Text] [Related]
5. A sensitive electrochemical aptasensor for ATP detection based on exonuclease III-assisted signal amplification strategy. Bao T, Shu H, Wen W, Zhang X, Wang S. Anal Chim Acta; 2015 Mar 03; 862():64-9. PubMed ID: 25682429 [Abstract] [Full Text] [Related]
6. CdSe/ZnS quantum dots-G-quadruplex/hemin hybrids as optical DNA sensors and aptasensors. Sharon E, Freeman R, Willner I. Anal Chem; 2010 Sep 01; 82(17):7073-7. PubMed ID: 20695436 [Abstract] [Full Text] [Related]
7. A G-quadruplex-based Label-free Fluorometric Aptasensor for Adenosine Triphosphate Detection. Li LJ, Tian X, Kong XJ, Chu X. Anal Sci; 2015 Sep 01; 31(6):469-73. PubMed ID: 26063007 [Abstract] [Full Text] [Related]
8. Homogeneous assay of target molecules based on chemiluminescence resonance energy transfer (CRET) using DNAzyme-linked aptamers. Mun H, Jo EJ, Li T, Joung HA, Hong DG, Shim WB, Jung C, Kim MG. Biosens Bioelectron; 2014 Aug 15; 58():308-13. PubMed ID: 24658027 [Abstract] [Full Text] [Related]
9. Label-free chemiluminescent aptasensor for platelet-derived growth factor detection based on exonuclease-assisted cascade autocatalytic recycling amplification. Bi S, Luo B, Ye J, Wang Z. Biosens Bioelectron; 2014 Dec 15; 62():208-13. PubMed ID: 25016251 [Abstract] [Full Text] [Related]
10. Highly-sensitive aptasensor based on fluorescence resonance energy transfer between l-cysteine capped ZnS quantum dots and graphene oxide sheets for the determination of edifenphos fungicide. Arvand M, Mirroshandel AA. Biosens Bioelectron; 2017 Oct 15; 96():324-331. PubMed ID: 28525850 [Abstract] [Full Text] [Related]
11. Sensitive chemiluminescence aptasensor based on exonuclease-assisted recycling amplification. Cai S, Sun Y, Lau C, Lu J. Anal Chim Acta; 2013 Jan 25; 761():137-42. PubMed ID: 23312324 [Abstract] [Full Text] [Related]
12. A chemiluminescent dual-aptasensor capable of simultaneously quantifying prostate specific antigen and vascular endothelial growth factor. Chong J, Chong H, Lee JH. Anal Biochem; 2019 Jan 01; 564-565():102-107. PubMed ID: 30367880 [Abstract] [Full Text] [Related]
13. "Off-on" electrochemiluminescence system for sensitive detection of ATP via target-induced structure switching. Liu Y, Lei J, Huang Y, Ju H. Anal Chem; 2014 Sep 02; 86(17):8735-41. PubMed ID: 25118587 [Abstract] [Full Text] [Related]
14. Detection of ochratoxin A (OTA) in coffee using chemiluminescence resonance energy transfer (CRET) aptasensor. Jo EJ, Mun H, Kim SJ, Shim WB, Kim MG. Food Chem; 2016 Mar 01; 194():1102-7. PubMed ID: 26471659 [Abstract] [Full Text] [Related]
15. G-quadruplex DNAzyme-based electrochemiluminescence biosensing strategy for VEGF165 detection: Combination of aptamer-target recognition and T7 exonuclease-assisted cycling signal amplification. Zhang H, Li M, Li C, Guo Z, Dong H, Wu P, Cai C. Biosens Bioelectron; 2015 Dec 15; 74():98-103. PubMed ID: 26120816 [Abstract] [Full Text] [Related]
16. Aptasensor based on fluorescence resonance energy transfer for the analysis of adenosine in urine samples of lung cancer patients. Hashemian Z, Khayamian T, Saraji M, Shirani MP. Biosens Bioelectron; 2016 May 15; 79():334-40. PubMed ID: 26722763 [Abstract] [Full Text] [Related]
17. Hemin/G-quadruplex-catalyzed aerobic oxidation of thiols to disulfides: application of the process for the development of sensors and aptasensors and for probing acetylcholine esterase activity. Golub E, Freeman R, Willner I. Anal Chem; 2013 Dec 17; 85(24):12126-33. PubMed ID: 24299064 [Abstract] [Full Text] [Related]
18. Rational design of a thrombin electrochemical aptasensor by conjugating two DNA aptamers with G-quadruplex halves. Yan Z, Han Z, Huang H, Shen H, Lu X. Anal Biochem; 2013 Nov 15; 442(2):237-40. PubMed ID: 23872010 [Abstract] [Full Text] [Related]
19. A highly sensitive fluorescence resonance energy transfer aptasensor for staphylococcal enterotoxin B detection based on exonuclease-catalyzed target recycling strategy. Wu S, Duan N, Ma X, Xia Y, Wang H, Wang Z. Anal Chim Acta; 2013 Jun 11; 782():59-66. PubMed ID: 23708285 [Abstract] [Full Text] [Related]
20. Comparison of turn-on and ratiometric fluorescent G-quadruplex aptasensor approaches for the detection of ATP. Srinivasan S, Ranganathan V, DeRosa MC, Murari BM. Anal Bioanal Chem; 2019 Mar 11; 411(7):1319-1330. PubMed ID: 30612178 [Abstract] [Full Text] [Related] Page: [Next] [New Search]