These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


195 related items for PubMed ID: 22749126

  • 1. Self-inhibition can limit biologically enhanced TCE dissolution from a TCE DNAPL.
    Haest PJ, Springael D, Seuntjens P, Smolders E.
    Chemosphere; 2012 Nov; 89(11):1369-75. PubMed ID: 22749126
    [Abstract] [Full Text] [Related]

  • 2. A three-layer diffusion-cell to examine bio-enhanced dissolution of chloroethene dense non-aqueous phase liquid.
    Philips J, Springael D, Smolders E.
    Chemosphere; 2011 May; 83(7):991-6. PubMed ID: 21376368
    [Abstract] [Full Text] [Related]

  • 3. Electron donor limitations reduce microbial enhanced trichloroethene DNAPL dissolution: a flux-based analysis using diffusion-cells.
    Philips J, Van Muylder R, Springael D, Smolders E.
    Chemosphere; 2013 Mar; 91(1):7-13. PubMed ID: 23228910
    [Abstract] [Full Text] [Related]

  • 4. Architecture, persistence and dissolution of a 20 to 45 year old trichloroethene DNAPL source zone.
    Rivett MO, Dearden RA, Wealthall GP.
    J Contam Hydrol; 2014 Dec 01; 170():95-115. PubMed ID: 25444120
    [Abstract] [Full Text] [Related]

  • 5. Motile Geobacter dechlorinators migrate into a model source zone of trichloroethene dense non-aqueous phase liquid: experimental evaluation and modeling.
    Philips J, Miroshnikov A, Haest PJ, Springael D, Smolders E.
    J Contam Hydrol; 2014 Dec 01; 170():28-38. PubMed ID: 25306502
    [Abstract] [Full Text] [Related]

  • 6. Acidification due to microbial dechlorination near a trichloroethene DNAPL is overcome with pH buffer or formate as electron donor: experimental demonstration in diffusion-cells.
    Philips J, Maes N, Springael D, Smolders E.
    J Contam Hydrol; 2013 Apr 01; 147():25-33. PubMed ID: 23500838
    [Abstract] [Full Text] [Related]

  • 7. Field study of TCE diffusion profiles below DNAPL to assess aquitard integrity.
    Parker BL, Cherry JA, Chapman SW.
    J Contam Hydrol; 2004 Oct 01; 74(1-4):197-230. PubMed ID: 15358493
    [Abstract] [Full Text] [Related]

  • 8. Bioenhanced dissolution of dense non-aqueous phase of trichloroethylene as affected by iron reducing conditions: model systems and environmental samples.
    Paul L, Smolders E.
    Chemosphere; 2015 Jan 01; 119():1113-1119. PubMed ID: 25460750
    [Abstract] [Full Text] [Related]

  • 9. Evaluation of trichloroethene recovery processes in heterogeneous aquifer cells flushed with biodegradable surfactants.
    Suchomel EJ, Ramsburg CA, Pennell KD.
    J Contam Hydrol; 2007 Dec 07; 94(3-4):195-214. PubMed ID: 17628205
    [Abstract] [Full Text] [Related]

  • 10. Liquid-liquid mass transfer of partitioning electron donors in chlorinated solvent source zones.
    Cápiro NL, Granbery EK, Lebrón CA, Major DW, McMaster ML, Pound MJ, Löffler FE, Pennell KD.
    Environ Sci Technol; 2011 Feb 15; 45(4):1547-54. PubMed ID: 21207963
    [Abstract] [Full Text] [Related]

  • 11. Enhanced dissolution of TCE in NAPL by TCE-degrading bacteria in wetland soils.
    Lee S.
    J Hazard Mater; 2007 Jun 25; 145(1-2):17-22. PubMed ID: 17126487
    [Abstract] [Full Text] [Related]

  • 12. Effect of source variability and transport processes on carbon isotope ratios of TCE and PCE in two sandy aquifers.
    Hunkeler D, Chollet N, Pittet X, Aravena R, Cherry JA, Parker BL.
    J Contam Hydrol; 2004 Oct 25; 74(1-4):265-82. PubMed ID: 15358496
    [Abstract] [Full Text] [Related]

  • 13. Relative contribution of DNAPL dissolution and matrix diffusion to the long-term persistence of chlorinated solvent source zones.
    Seyedabbasi MA, Newell CJ, Adamson DT, Sale TC.
    J Contam Hydrol; 2012 Jun 25; 134-135():69-81. PubMed ID: 22591740
    [Abstract] [Full Text] [Related]

  • 14. Use of emulsified vegetable oil to support bioremediation of TCE DNAPL in soil columns.
    Harkness M, Fisher A.
    J Contam Hydrol; 2013 Aug 25; 151():16-33. PubMed ID: 23697993
    [Abstract] [Full Text] [Related]

  • 15. Interphase mass transfer during chemical oxidation of TCE DNAPL in an aqueous system.
    Urynowicz MA, Siegrist RL.
    J Contam Hydrol; 2005 Nov 15; 80(3-4):93-106. PubMed ID: 16214259
    [Abstract] [Full Text] [Related]

  • 16. DFN-M field characterization of sandstone for a process-based site conceptual model and numerical simulations of TCE transport with degradation.
    Pierce AA, Chapman SW, Zimmerman LK, Hurley JC, Aravena R, Cherry JA, Parker BL.
    J Contam Hydrol; 2018 May 15; 212():96-114. PubMed ID: 29530334
    [Abstract] [Full Text] [Related]

  • 17. PCE dissolution and simultaneous dechlorination by nanoscale zero-valent iron particles in a DNAPL source zone.
    Fagerlund F, Illangasekare TH, Phenrat T, Kim HJ, Lowry GV.
    J Contam Hydrol; 2012 Apr 01; 131(1-4):9-28. PubMed ID: 22326687
    [Abstract] [Full Text] [Related]

  • 18. The reactive transport of trichloroethene is influenced by residence time and microbial numbers.
    Haest PJ, Philips J, Springael D, Smolders E.
    J Contam Hydrol; 2011 Jan 25; 119(1-4):89-98. PubMed ID: 20952091
    [Abstract] [Full Text] [Related]

  • 19. Bioaugmentation for treatment of dense non-aqueous phase liquid in fractured sandstone blocks.
    Schaefer CE, Towne RM, Vainberg S, McCray JE, Steffan RJ.
    Environ Sci Technol; 2010 Jul 01; 44(13):4958-64. PubMed ID: 20524648
    [Abstract] [Full Text] [Related]

  • 20. Enhanced reductive dechlorination of trichloroethene in an acidic DNAPL impacted aquifer.
    Borden RC, Richardson SD, Bodour AA.
    J Environ Manage; 2019 May 01; 237():617-628. PubMed ID: 30831431
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.