These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Three-dimensional structure of Endo-1,4-beta-xylanase I from Aspergillus niger: molecular basis for its low pH optimum. Krengel U, Dijkstra BW. J Mol Biol; 1996 Oct 18; 263(1):70-8. PubMed ID: 8890913 [Abstract] [Full Text] [Related]
23. First crystallographic structure of a xylanase from glycoside hydrolase family 5: implications for catalysis. Larson SB, Day J, Barba de la Rosa AP, Keen NT, McPherson A. Biochemistry; 2003 Jul 22; 42(28):8411-22. PubMed ID: 12859186 [Abstract] [Full Text] [Related]
24. Modulation of inhibitory activity of xylanase-α-amylase inhibitor protein (XAIP): binding studies and crystal structure determination of XAIP-II from Scadoxus multiflorus at 1.2 Å resolution. Kumar S, Singh N, Mishra B, Dube D, Sinha M, Singh SB, Dey S, Kaur P, Sharma S, Singh TP. BMC Struct Biol; 2010 Nov 20; 10():41. PubMed ID: 21092126 [Abstract] [Full Text] [Related]
25. Structure and function of a family 10 beta-xylanase chimera of Streptomyces olivaceoviridis E-86 FXYN and Cellulomonas fimi Cex. Kaneko S, Ichinose H, Fujimoto Z, Kuno A, Yura K, Go M, Mizuno H, Kusakabe I, Kobayashi H. J Biol Chem; 2004 Jun 18; 279(25):26619-26. PubMed ID: 15078885 [Abstract] [Full Text] [Related]
26. Structural insights of RmXyn10A - A prebiotic-producing GH10 xylanase with a non-conserved aglycone binding region. Aronsson A, Güler F, Petoukhov MV, Crennell SJ, Svergun DI, Linares-Pastén JA, Nordberg Karlsson E. Biochim Biophys Acta Proteins Proteom; 2018 Feb 18; 1866(2):292-306. PubMed ID: 29155107 [Abstract] [Full Text] [Related]
27. Computational approach for identification, characterization, three-dimensional structure modelling and machine learning-based thermostability prediction of xylanases from the genome of Aspergillus fumigatus. Dodda SR, Hossain M, Kapoor BS, Dasgupta S, B VPR, Aikat K, Mukhopadhyay SS. Comput Biol Chem; 2021 Apr 18; 91():107451. PubMed ID: 33601238 [Abstract] [Full Text] [Related]
28. Significantly improving the thermostability of a hyperthermophilic GH10 family xylanase XynAF1 by semi-rational design. Li G, Zhou X, Li Z, Liu Y, Liu D, Miao Y, Wan Q, Zhang R. Appl Microbiol Biotechnol; 2021 Jun 18; 105(11):4561-4576. PubMed ID: 34014347 [Abstract] [Full Text] [Related]
29. Structural and functional analyses of catalytic domain of GH10 xylanase from Thermoanaerobacterium saccharolyticum JW/SL-YS485. Han X, Gao J, Shang N, Huang CH, Ko TP, Chen CC, Chan HC, Cheng YS, Zhu Z, Wiegel J, Luo W, Guo RT, Ma Y. Proteins; 2013 Jul 18; 81(7):1256-65. PubMed ID: 23508990 [Abstract] [Full Text] [Related]
30. Identification of structural determinants for inhibition strength and specificity of wheat xylanase inhibitors TAXI-IA and TAXI-IIA. Pollet A, Sansen S, Raedschelders G, Gebruers K, Rabijns A, Delcour JA, Courtin CM. FEBS J; 2009 Jul 18; 276(14):3916-27. PubMed ID: 19769747 [Abstract] [Full Text] [Related]
31. Endo-β-D-1,4-mannanase from Chrysonilia sitophila displays a novel loop arrangement for substrate selectivity. Gonçalves AM, Silva CS, Madeira TI, Coelho R, de Sanctis D, San Romão MV, Bento I. Acta Crystallogr D Biol Crystallogr; 2012 Nov 18; 68(Pt 11):1468-78. PubMed ID: 23090396 [Abstract] [Full Text] [Related]
32. The dual nature of the wheat xylanase protein inhibitor XIP-I: structural basis for the inhibition of family 10 and family 11 xylanases. Payan F, Leone P, Porciero S, Furniss C, Tahir T, Williamson G, Durand A, Manzanares P, Gilbert HJ, Juge N, Roussel A. J Biol Chem; 2004 Aug 20; 279(34):36029-37. PubMed ID: 15181003 [Abstract] [Full Text] [Related]
33. Structure-specificity relationships of an intracellular xylanase from Geobacillus stearothermophilus. Solomon V, Teplitsky A, Shulami S, Zolotnitsky G, Shoham Y, Shoham G. Acta Crystallogr D Biol Crystallogr; 2007 Aug 20; 63(Pt 8):845-59. PubMed ID: 17642511 [Abstract] [Full Text] [Related]
34. Two high-resolution structures of potato endo-1,3-β-glucanase reveal subdomain flexibility with implications for substrate binding. Wojtkowiak A, Witek K, Hennig J, Jaskolski M. Acta Crystallogr D Biol Crystallogr; 2012 Jun 20; 68(Pt 6):713-23. PubMed ID: 22683794 [Abstract] [Full Text] [Related]
35. The structure of an inverting GH43 beta-xylosidase from Geobacillus stearothermophilus with its substrate reveals the role of the three catalytic residues. Brüx C, Ben-David A, Shallom-Shezifi D, Leon M, Niefind K, Shoham G, Shoham Y, Schomburg D. J Mol Biol; 2006 May 26; 359(1):97-109. PubMed ID: 16631196 [Abstract] [Full Text] [Related]
36. Improvement of GH10 family xylanase thermostability by introducing of an extra α-helix at the C-terminal. Li G, Chen X, Zhou X, Huang R, Li L, Miao Y, Liu D, Zhang R. Biochem Biophys Res Commun; 2019 Jul 30; 515(3):417-422. PubMed ID: 31160089 [Abstract] [Full Text] [Related]
37. Structural insight into potential cold adaptation mechanism through a psychrophilic glycoside hydrolase family 10 endo-β-1,4-xylanase. Zheng Y, Li Y, Liu W, Chen CC, Ko TP, He M, Xu Z, Liu M, Luo H, Guo RT, Yao B, Ma Y. J Struct Biol; 2016 Mar 30; 193(3):206-211. PubMed ID: 26719223 [Abstract] [Full Text] [Related]
38. Principle component analysis in F/10 and G/11 xylanase. Liu L, Zhang J, Chen B, Shao W. Biochem Biophys Res Commun; 2004 Sep 10; 322(1):277-80. PubMed ID: 15313202 [Abstract] [Full Text] [Related]
39. Refined molecular structure of pig pancreatic alpha-amylase at 2.1 A resolution. Larson SB, Greenwood A, Cascio D, Day J, McPherson A. J Mol Biol; 1994 Feb 04; 235(5):1560-84. PubMed ID: 8107092 [Abstract] [Full Text] [Related]
40. A novel pH-stable, bifunctional xylanase isolated from a deep-sea microorganism, Demequina sp. JK4. Meng X, Shao Z, Hong Y, Lin L, Li C, Liu Z. J Microbiol Biotechnol; 2009 Oct 04; 19(10):1077-84. PubMed ID: 19884762 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]