These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
169 related items for PubMed ID: 22751669
21. Changes at the KinA PAS-A dimerization interface influence histidine kinase function. Lee J, Tomchick DR, Brautigam CA, Machius M, Kort R, Hellingwerf KJ, Gardner KH. Biochemistry; 2008 Apr 01; 47(13):4051-64. PubMed ID: 18324779 [Abstract] [Full Text] [Related]
22. Evidence that Autophosphorylation of the Major Sporulation Kinase in Bacillus subtilis Is Able To Occur in trans. Devi SN, Kiehler B, Haggett L, Fujita M. J Bacteriol; 2015 Aug 01; 197(16):2675-84. PubMed ID: 26055117 [Abstract] [Full Text] [Related]
23. Structural and functional aspects of the sensor histidine kinase PrrB from Mycobacterium tuberculosis. Nowak E, Panjikar S, Morth JP, Jordanova R, Svergun DI, Tucker PA. Structure; 2006 Feb 01; 14(2):275-85. PubMed ID: 16472747 [Abstract] [Full Text] [Related]
24. The essential YycFG two-component system of Bacillus subtilis. Szurmant H, Fukushima T, Hoch JA. Methods Enzymol; 2007 Feb 01; 422():396-417. PubMed ID: 17628151 [Abstract] [Full Text] [Related]
25. High energy exchange: proteins that make or break phosphoramidate bonds. Robinson VL, Stock AM. Structure; 1999 Mar 15; 7(3):R47-53. PubMed ID: 10368305 [Abstract] [Full Text] [Related]
26. Overview of protein phosphorylation in bacteria with a main focus on unusual protein kinases in Bacillus subtilis. Zhang A, Pompeo F, Galinier A. Res Microbiol; 2021 Mar 15; 172(7-8):103871. PubMed ID: 34500011 [Abstract] [Full Text] [Related]
27. The WalRK (YycFG) and σ(I) RsgI regulators cooperate to control CwlO and LytE expression in exponentially growing and stressed Bacillus subtilis cells. Salzberg LI, Powell L, Hokamp K, Botella E, Noone D, Devine KM. Mol Microbiol; 2013 Jan 15; 87(1):180-95. PubMed ID: 23199363 [Abstract] [Full Text] [Related]
28. Conformational dynamics of the essential sensor histidine kinase WalK. Cai Y, Su M, Ahmad A, Hu X, Sang J, Kong L, Chen X, Wang C, Shuai J, Han A. Acta Crystallogr D Struct Biol; 2017 Oct 01; 73(Pt 10):793-803. PubMed ID: 28994408 [Abstract] [Full Text] [Related]
29. Histidine kinases: diversity of domain organization. Dutta R, Qin L, Inouye M. Mol Microbiol; 1999 Nov 01; 34(4):633-40. PubMed ID: 10564504 [Abstract] [Full Text] [Related]
30. Active site mutations in CheA, the signal-transducing protein kinase of the chemotaxis system in Escherichia coli. Hirschman A, Boukhvalova M, VanBruggen R, Wolfe AJ, Stewart RC. Biochemistry; 2001 Nov 20; 40(46):13876-87. PubMed ID: 11705377 [Abstract] [Full Text] [Related]
31. Crystal structure of a complex between the phosphorelay protein YPD1 and the response regulator domain of SLN1 bound to a phosphoryl analog. Zhao X, Copeland DM, Soares AS, West AH. J Mol Biol; 2008 Jan 25; 375(4):1141-51. PubMed ID: 18076904 [Abstract] [Full Text] [Related]
32. PAS-A domain of phosphorelay sensor kinase A: a catalytic ATP-binding domain involved in the initiation of development in Bacillus subtilis. Stephenson K, Hoch JA. Proc Natl Acad Sci U S A; 2001 Dec 18; 98(26):15251-6. PubMed ID: 11734624 [Abstract] [Full Text] [Related]
33. 2.3 A X-ray structure of the heme-bound GAF domain of sensory histidine kinase DosT of Mycobacterium tuberculosis. Podust LM, Ioanoviciu A, Ortiz de Montellano PR. Biochemistry; 2008 Nov 25; 47(47):12523-31. PubMed ID: 18980385 [Abstract] [Full Text] [Related]
34. Characterization of H-box region mutants of WalK inert to the action of waldiomycin in Bacillus subtilis. Kato A, Ueda S, Oshima T, Inukai Y, Okajima T, Igarashi M, Eguchi Y, Utsumi R. J Gen Appl Microbiol; 2017 Sep 05; 63(4):212-221. PubMed ID: 28674376 [Abstract] [Full Text] [Related]
35. Structural and chemical requirements for histidine phosphorylation by the chemotaxis kinase CheA. Quezada CM, Hamel DJ, Gradinaru C, Bilwes AM, Dahlquist FW, Crane BR, Simon MI. J Biol Chem; 2005 Aug 26; 280(34):30581-5. PubMed ID: 15994328 [Abstract] [Full Text] [Related]
36. Inactivation of multiple bacterial histidine kinases by targeting the ATP-binding domain. Wilke KE, Francis S, Carlson EE. ACS Chem Biol; 2015 Jan 16; 10(1):328-35. PubMed ID: 25531939 [Abstract] [Full Text] [Related]
37. The Eukaryotic-Like Ser/Thr Kinase PrkC Regulates the Essential WalRK Two-Component System in Bacillus subtilis. Libby EA, Goss LA, Dworkin J. PLoS Genet; 2015 Jun 16; 11(6):e1005275. PubMed ID: 26102633 [Abstract] [Full Text] [Related]
38. Extracytoplasmic PAS-like domains are common in signal transduction proteins. Chang C, Tesar C, Gu M, Babnigg G, Joachimiak A, Pokkuluri PR, Szurmant H, Schiffer M. J Bacteriol; 2010 Feb 16; 192(4):1156-9. PubMed ID: 20008068 [Abstract] [Full Text] [Related]
39. Peptidoglycan metabolism is controlled by the WalRK (YycFG) and PhoPR two-component systems in phosphate-limited Bacillus subtilis cells. Bisicchia P, Lioliou E, Noone D, Salzberg LI, Botella E, Hübner S, Devine KM. Mol Microbiol; 2010 Feb 16; 75(4):972-89. PubMed ID: 20487291 [Abstract] [Full Text] [Related]
40. Amino acid identity at one position within the alpha1 helix of both the histidine kinase and the response regulator of the WalRK and PhoPR two-component systems plays a crucial role in the specificity of phosphotransfer. Jende I, Varughese KI, Devine KM. Microbiology (Reading); 2010 Jun 16; 156(Pt 6):1848-1859. PubMed ID: 20167622 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]