These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


510 related items for PubMed ID: 22757511

  • 1. Neuronal avalanches of a self-organized neural network with active-neuron-dominant structure.
    Li X, Small M.
    Chaos; 2012 Jun; 22(2):023104. PubMed ID: 22757511
    [Abstract] [Full Text] [Related]

  • 2. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks. II. Input selectivity--symmetry breaking.
    Gilson M, Burkitt AN, Grayden DB, Thomas DA, van Hemmen JL.
    Biol Cybern; 2009 Aug; 101(2):103-14. PubMed ID: 19536559
    [Abstract] [Full Text] [Related]

  • 3. Self-organization of a neural network with heterogeneous neurons enhances coherence and stochastic resonance.
    Li X, Zhang J, Small M.
    Chaos; 2009 Mar; 19(1):013126. PubMed ID: 19334990
    [Abstract] [Full Text] [Related]

  • 4. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks IV: structuring synaptic pathways among recurrent connections.
    Gilson M, Burkitt AN, Grayden DB, Thomas DA, van Hemmen JL.
    Biol Cybern; 2009 Dec; 101(5-6):427-44. PubMed ID: 19937070
    [Abstract] [Full Text] [Related]

  • 5. Effects of bursting dynamic features on the generation of multi-clustered structure of neural network with symmetric spike-timing-dependent plasticity learning rule.
    Liu H, Song Y, Xue F, Li X.
    Chaos; 2015 Nov; 25(11):113108. PubMed ID: 26627568
    [Abstract] [Full Text] [Related]

  • 6. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks V: self-organization schemes and weight dependence.
    Gilson M, Burkitt AN, Grayden DB, Thomas DA, van Hemmen JL.
    Biol Cybern; 2010 Nov; 103(5):365-86. PubMed ID: 20882297
    [Abstract] [Full Text] [Related]

  • 7. Self-organization and neuronal avalanches in networks of dissociated cortical neurons.
    Pasquale V, Massobrio P, Bologna LL, Chiappalone M, Martinoia S.
    Neuroscience; 2008 Jun 02; 153(4):1354-69. PubMed ID: 18448256
    [Abstract] [Full Text] [Related]

  • 8. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks. I. Input selectivity--strengthening correlated input pathways.
    Gilson M, Burkitt AN, Grayden DB, Thomas DA, van Hemmen JL.
    Biol Cybern; 2009 Aug 02; 101(2):81-102. PubMed ID: 19536560
    [Abstract] [Full Text] [Related]

  • 9. Spike-time-dependent plasticity and heterosynaptic competition organize networks to produce long scale-free sequences of neural activity.
    Fiete IR, Senn W, Wang CZ, Hahnloser RH.
    Neuron; 2010 Feb 25; 65(4):563-76. PubMed ID: 20188660
    [Abstract] [Full Text] [Related]

  • 10. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks III: Partially connected neurons driven by spontaneous activity.
    Gilson M, Burkitt AN, Grayden DB, Thomas DA, van Hemmen JL.
    Biol Cybern; 2009 Dec 25; 101(5-6):411-26. PubMed ID: 19937071
    [Abstract] [Full Text] [Related]

  • 11. Self-organization of feed-forward structure and entrainment in excitatory neural networks with spike-timing-dependent plasticity.
    Takahashi YK, Kori H, Masuda N.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May 25; 79(5 Pt 1):051904. PubMed ID: 19518477
    [Abstract] [Full Text] [Related]

  • 12. Synaptic plasticity: taming the beast.
    Abbott LF, Nelson SB.
    Nat Neurosci; 2000 Nov 25; 3 Suppl():1178-83. PubMed ID: 11127835
    [Abstract] [Full Text] [Related]

  • 13. Spike-timing-dependent plasticity in balanced random networks.
    Morrison A, Aertsen A, Diesmann M.
    Neural Comput; 2007 Jun 25; 19(6):1437-67. PubMed ID: 17444756
    [Abstract] [Full Text] [Related]

  • 14. Spike-timing dynamics of neuronal groups.
    Izhikevich EM, Gally JA, Edelman GM.
    Cereb Cortex; 2004 Aug 25; 14(8):933-44. PubMed ID: 15142958
    [Abstract] [Full Text] [Related]

  • 15. Heterogeneity of synaptic input connectivity regulates spike-based neuronal avalanches.
    Wu S, Zhang Y, Cui Y, Li H, Wang J, Guo L, Xia Y, Yao D, Xu P, Guo D.
    Neural Netw; 2019 Feb 25; 110():91-103. PubMed ID: 30508808
    [Abstract] [Full Text] [Related]

  • 16. Spike timing-dependent plasticity is affected by the interplay of intrinsic and network oscillations.
    Baroni F, Varona P.
    J Physiol Paris; 2010 Feb 25; 104(1-2):91-8. PubMed ID: 19913095
    [Abstract] [Full Text] [Related]

  • 17. Learning in realistic networks of spiking neurons and spike-driven plastic synapses.
    Mongillo G, Curti E, Romani S, Amit DJ.
    Eur J Neurosci; 2005 Jun 25; 21(11):3143-60. PubMed ID: 15978023
    [Abstract] [Full Text] [Related]

  • 18. Cooperation of spike timing-dependent and heterosynaptic plasticities in neural networks: a Fokker-Planck approach.
    Zhu L, Lai YC, Hoppensteadt FC, He J.
    Chaos; 2006 Jun 25; 16(2):023105. PubMed ID: 16822008
    [Abstract] [Full Text] [Related]

  • 19. Competitive Hebbian learning through spike-timing-dependent synaptic plasticity.
    Song S, Miller KD, Abbott LF.
    Nat Neurosci; 2000 Sep 25; 3(9):919-26. PubMed ID: 10966623
    [Abstract] [Full Text] [Related]

  • 20. Learning real-world stimuli in a neural network with spike-driven synaptic dynamics.
    Brader JM, Senn W, Fusi S.
    Neural Comput; 2007 Nov 25; 19(11):2881-912. PubMed ID: 17883345
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 26.