These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


210 related items for PubMed ID: 22761719

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Comparative analysis of volatile compounds in thirty nine melon cultivars by headspace solid-phase microextraction and gas chromatography-mass spectrometry.
    Shi J, Wu H, Xiong M, Chen Y, Chen J, Zhou B, Wang H, Li L, Fu X, Bie Z, Huang Y.
    Food Chem; 2020 Jun 30; 316():126342. PubMed ID: 32044706
    [Abstract] [Full Text] [Related]

  • 3. An integrative "omics" approach identifies new candidate genes to impact aroma volatiles in peach fruit.
    Sánchez G, Venegas-Calerón M, Salas JJ, Monforte A, Badenes ML, Granell A.
    BMC Genomics; 2013 May 23; 14():343. PubMed ID: 23701715
    [Abstract] [Full Text] [Related]

  • 4. Characterization of the aromatic profile of purple passion fruit (Passiflora edulis Sims) during ripening by HS-SPME-GC/MS and RNA sequencing.
    Li C, Xin M, Li L, He X, Yi P, Tang Y, Li J, Zheng F, Liu G, Sheng J, Li Z, Sun J.
    Food Chem; 2021 Sep 01; 355():129685. PubMed ID: 33799248
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Evaluation of volatile compounds from Chinese dwarf cherry (Cerasus humilis (Bge.) Sok.) germplasms by headspace solid-phase microextraction and gas chromatography-mass spectrometry.
    Ye L, Yang C, Li W, Hao J, Sun M, Zhang J, Zhang Z.
    Food Chem; 2017 Feb 15; 217():389-397. PubMed ID: 27664650
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Evaluation of the volatile profile of 33 Pyrus ussuriensis cultivars by HS-SPME with GC-MS.
    Qin G, Tao S, Cao Y, Wu J, Zhang H, Huang W, Zhang S.
    Food Chem; 2012 Oct 15; 134(4):2367-82. PubMed ID: 23442698
    [Abstract] [Full Text] [Related]

  • 13. Analysis of Volatile Compounds in Pears by HS-SPME-GC×GC-TOFMS.
    Wang C, Zhang W, Li H, Mao J, Guo C, Ding R, Wang Y, Fang L, Chen Z, Yang G.
    Molecules; 2019 May 09; 24(9):. PubMed ID: 31075878
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Distribution of Volatile Compounds in Different Fruit Structures in Four Tomato Cultivars.
    Li J, Di T, Bai J.
    Molecules; 2019 Jul 17; 24(14):. PubMed ID: 31319482
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Comparison of techniques for the isolation of volatiles from cashew apple juice.
    Sampaio KL, Biasoto AC, Da Silva MA.
    J Sci Food Agric; 2015 Jan 17; 95(2):299-312. PubMed ID: 24789719
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.