These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


210 related items for PubMed ID: 22761719

  • 21. Characterisation of the volatile profile of coconut water from five varieties using an optimised HS-SPME-GC analysis.
    Prades A, Assa RR, Dornier M, Pain JP, Boulanger R.
    J Sci Food Agric; 2012 Sep; 92(12):2471-8. PubMed ID: 22692849
    [Abstract] [Full Text] [Related]

  • 22. Development and comprehensive HS-SPME/GC-MS analysis optimization, comparison, and evaluation of different cabbage cultivars (Brassica oleracea L. var. capitata L.) volatile components.
    Wei S, Xiao X, Wei L, Li L, Li G, Liu F, Xie J, Yu J, Zhong Y.
    Food Chem; 2021 Mar 15; 340():128166. PubMed ID: 33010642
    [Abstract] [Full Text] [Related]

  • 23. The peach volatilome modularity is reflected at the genetic and environmental response levels in a QTL mapping population.
    Sánchez G, Martínez J, Romeu J, García J, Monforte AJ, Badenes ML, Granell A.
    BMC Plant Biol; 2014 May 19; 14():137. PubMed ID: 24885290
    [Abstract] [Full Text] [Related]

  • 24. Advances in fruit aroma volatile research.
    El Hadi MA, Zhang FJ, Wu FF, Zhou CH, Tao J.
    Molecules; 2013 Jul 11; 18(7):8200-29. PubMed ID: 23852166
    [Abstract] [Full Text] [Related]

  • 25. Volatile metabolite profiling reveals the changes in the volatile compounds of new spontaneously generated loquat cultivars.
    Besada C, Sanchez G, Gil R, Granell A, Salvador A.
    Food Res Int; 2017 Oct 11; 100(Pt 1):234-243. PubMed ID: 28873683
    [Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35. Headspace solid-phase microextraction gas chromatography-mass spectrometry determination of volatile compounds in different varieties of African star apple fruit (Chrysophillum albidum).
    Lasekan O, Khatib A, Juhari H, Patiram P, Lasekan S.
    Food Chem; 2013 Dec 01; 141(3):2089-97. PubMed ID: 23870932
    [Abstract] [Full Text] [Related]

  • 36. Optimization and application of headspace-solid-phase micro-extraction coupled with gas chromatography-mass spectrometry for the determination of volatile compounds in cherry wines.
    Xiao Z, Zhou X, Niu Y, Yu D, Zhu J, Zhu G.
    J Chromatogr B Analyt Technol Biomed Life Sci; 2015 Jan 26; 978-979():122-30. PubMed ID: 25544009
    [Abstract] [Full Text] [Related]

  • 37. Electronic nose to detect volatile compound profile and quality changes in 'spring Belle' peach (Prunus persica L.) during cold storage in relation to fruit optical properties measured by time-resolved reflectance spectroscopy.
    Rizzolo A, Bianchi G, Vanoli M, Lurie S, Spinelli L, Torricelli A.
    J Agric Food Chem; 2013 Feb 27; 61(8):1671-85. PubMed ID: 23020286
    [Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39. Odour-active compounds in papaya fruit cv. Red Maradol.
    Pino JA.
    Food Chem; 2014 Mar 01; 146():120-6. PubMed ID: 24176322
    [Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 11.